Search Results

You are looking at 21 - 30 of 55 items for

  • Author or Editor: James E. Barrett x
  • Refine by Access: All x
Clear All Modify Search
Free access

Thea M Edwards, Terril A. Nell, and James E. Barrett

Increased rates of senescence and ethylene related damage of potted flowering plants have been observed in supermarket produce areas where flowers and climacteric produce are displayed together. Ethylene levels in produce areas were found to average 20 ppb. An open system of clear glass chambers with fiberglass lids was designed to simulate retail supermarket conditions. The chambers were kept in postharvest rooms where light level and temperature could be controlled. In a 3 by 3 by 3 Box-Behnken design, Sunblaze `Candy' miniature potted roses were exposed to three levels of ethylene, 20, 40, and 80 ppb, for 1, 2, and 4 days. The three light levels used were: 0, 7, and 14 μmol·m-2·s-1. Ethylene damage was based on leaf and bud drop and decreased flower longevity.

Free access

Nadia Roude, Terril A. Nell, and James E. Barrett

Chrysanthemums `Bright Golden Anne' and `Iridon' [Dendranthemum ×grandiflorum (Ramat.) Kitamura] were grown with N concentrations of 1.3, 2.6, or 5.2 kg N/m' of water during the crop cycle from either Osmocote slow-release 14N-6.2P-11.6K or 12.4N4.4P-14.lK or Peters soluble 20N-4.4P-16.6K. Plants were moved to simulated interior rooms at flowering to evaluate effects of the treatments on longevity. `Bright Golden Anne' longevity was not affected by fertilizer source, but `Iridon' longevity was reduced when Peters soluble fertilizer was applied at 2.6 and 5.2 kg N/m3 of water, whereas N concentration did not affect longevity when the slow-release Osmocote fertilizer was used. In an additional study, `Tip', `Copper Hostess', and `Iridon' were grown in three soil media using 1.3, 2.6, or 5.2 kg N/m' of water using Peters soluble 20N-4.4P-16.6K fertilizer from time of planting until flowering. Longevity increased as N concentration decreased when chrysanthemums were grown in Metro Mix 350, whereas N concentration had no significant effect on chrysanthemums grown in Vergro Klay Mix or a peat-perlite-sand mix. `Tip' showed significant in. creases in longevity as N concentration decreased.

Free access

Lori A. Black, Terril A. Nell, and James E. Barrett

Free access

Trinidad Reyes, Terril A. Nell, and James E. Barrett

`Tara' and `Boaldi' were fertilized with 150 and 450 ppm from 20N–4.7P–16.6K soluble fertilizer and moved at flowering to postproduction conditions (21 ± 2C and 10 μmol·m–2·s–1). Shipping was simulated for 1 week at 26C. `Tara' exhibited burned leaf margins (necrosis) and chlorosis following shipping. At 150 ppm, leaves had brown, dried margins, but the damage did not progress indoors. Necrosis was worse at 450 ppm. Leaf chlorosis/necrosis of non-shipped plants at the 450 fertilizer level did not appear until the 3rd week indoors. At experiment termination, no leaf damage occurred in non-shipped `Tara' or `Boaldi' with 150 ppm. `Boaldi' did not show damage after shipping regardless of the treatment but symptoms (necrosis and wilting of leaves) evolved during the first 2 weeks indoors on plants fertilized with 450 ppm. A 50% reduction in root soluble carbohydrates was found at the highest fertilizer rate at flowering, suggesting that leaf chlorosis/necrosis is related to carbohydrate depletion in chrysanthemum.

Free access

Ahmed A. Al-Badawy, James E. Barrett, and Terril A. Nell

To evaluate importance of paclobutrazol residues on surfaces, begonia (Begonia semperflorens) cv. Whisky and chrysanthemum (Dendranthema grandiflora) cv. Coral Davis plants were grown in flats sprayed with paclobutrazol at 0, 50, 100, 200 and 400 ppm.

For begonia, the plant heights at 2 and 4 weeks after treatments were decreased by 39 to 49% and by 55-69%, respectively. The overall change in height ranged from 2.1 to 4.9 cm compared to 15.3 cm for the control plants.

For chrysanthemum, a reduction in plant height was observed and the overall change in height ranged from 2.9 to 5.6 cm compared to 28.8 cm for the control plants.

Based on these results, there is a potential for paclobutrazol to affect non-target plants when subirrigation is used.

Free access

José A. Monteiro, Terril A. Nell, and James E. Barrett

Five cultivars of potted miniature roses (`Candy Sunblaze', `Lady Sunblaze', `Orange Sunblaze', `Red Sunblaze' and `Royal Sunblaze') were grown until stage 1 (bud showing color with sepals starting to unfold). At this stage one half of the plants were moved to interior conditions (12 μmol s-1 m-2 from cool white fluorescent lights for 12 hr daily and 21 ± 1C) and the other half were maintained in the greenhouse at recommended production conditions. Stage 1 bud respiration, flower respiration at flowering and at 2, 4, 6 and 8 days after flowering were assessed for plants in the greenhouse and under interior conditions. Also, flower interior longevity was assessed for all the cultivars and the correlations between flower longevity and flower respiration at the different stages were analyzed. At flowering and under interior conditions `Red Sunblaze' lasted the longest (23 days) followed by `Orange Sunblaze' (18 days), `Lady Sunblaze' and `Candy Sunblaze' (16 days), and `Royal Sunblaze' (13 days) and flower respiration was 2.08, 2.74, 3.91, 3.59 and 3.94 mg CO2 g-1 hr-1, respectively. In miniature rose, flower longevity was negatively correlated with flower respiration rate (P = 0.01).

Free access

Brent M. Chapman, James E. Barrett, and Terril A. Nell

Catharanthus roseus `Cooler Peppermint' were grown under four different watering regimes [well-watered (WW), wilt plus 1 day (W+1), wilt plus 3 days (W+3), and wilt plus 1 day during the last 2 weeks only (L W+1)] and two different light levels [1100 and 750 μmol·m–2·s–1]. Stress treatments affected finished plant size and leaf area as well as stomatal conductance, water potential and time to wilt during two dry-down periods imposed at the end of an 8-week production cycle. W+3 plants were 50% smaller with 50% less leaf area compared to WW plants. During the second dry-down period, WW plants in high light wilted in 2 days vs 4 days for the W+3 plants. Similarly, WW plants in low light wilted in 3 days vs 6 days for the W+3 plants. The W+3 plants maintained significantly higher water potentials and greater stomatal conductances than the other treatments throughout both dry-down periods.

Free access

Jeff B. Million, James E. Barrett, and Terril A. Nell

Drench applications of paclobutrazol (PBZ) are becoming increasingly popular as a means for controlling height in potted plants, and research is being conducted to quantify the distribution of PBZ following applications. In one trial, 120 ml of 0 or 1 mg 1-1 PBZ were applied to 15-cm pots filled with either Vergro Klay Mix (no bark) or Metro Mix 500 (bark). A bioassay using broccoli (Brassica oleracea L. Italica) seedlings was used to quantify PBZ in leachates and media following treatment drenches. Leachate PBZ concentrations were lower for Vergro than for Metro Mix 500; however, leachates for both media were <0.1 mg·liter–1. Concentrations of PBZ in media decreased with depth and were four to 10 times higher in the uppermost 2.5 cm than in lower horizons. For the uppermost 2.5 cm of media, higher PBZ concentrations were recovered in Metro Mix 500 than in Vergro. A follow-up study will compare surface vs. subsurface application methods on the movement of PBZ into pots.

Free access

Nadia Roude, Terril A. Nell, and James E. Barrett

Plant height, flower diameter, days to flower, and longevity of `Iridon' chrysanthemums [Dendranthemum × grandiflorum (Ramat.) Kitamura] were not affected by various N and K concentrations (112, 225, 337, and 450 mg·liter-1) supplied during the last 5 weeks of production. However, increasing N concentration increased medium conductance, while varying K concentration had no effect on conductance. Visual grade of `Iridon' after 3 weeks in a simulated interior environment showed an interaction between concentrations of N and K. In a second study, growth and longevity of `Iridon' were affected by NH4: NO3 ratios. Plants receiving a 0:1.0 ratio flowered 4 days later than plants receiving a 0.5:0.5 ratio and were taller than plants fertilized with a 1.0:0 ratio. Longevity was greater in plants receiving a 0:1.0 ratio than in those receiving 0.5:0.5 or 0.75:0.25 ratios. Also, longevity was similar in plants receiving NH4: NO3 ratios of 0:1.0, 0.1:0.9, 0.2:0.8, and 0.3:0.7. Plants receiving 0:1.0 lasted 6 days longer than those receiving a 0.4:0.6 ratio.

Free access

José A. Monteiro, Terril A. Nell, and James E. Barrett

Research was conducted to investigate the relationship between flower respiration and flower longevity as well as to assess the possibility of using miniature rose (Rosa hybrida L.) flower respiration as an indicator of potential flower longevity. Using several miniature rose cultivars as a source of variation, four experiments were conducted throughout the year to study flower respiration and flower longevity under interior conditions. For plants under greenhouse as well as interior conditions, flower respiration was assessed on one flower per plant, from end-of-production (sepals beginning to separate) up to 8 days after anthesis. Interior conditions were 21 ± 1 °C and 50 ± 5% relative humidity with a 12-hour photoperiod of 12 μmol·m-2·s-1 (photosynthetically active radiation). Flower respiration was higher if the plants were produced during spring/summer as compared to fall/winter. `Meidanclar', `Schobitet', and `Meilarco' miniature roses had higher flower respiration rates than `Meijikatar' and `Meirutral'. These two cultivars with the lowest respiration rates showed much greater flower longevity if grown during spring/summer as compared to fall/winter. The three cultivars with the higher respiration rates did not show differences in flower longevity between seasons. For plants under greenhouse or interior conditions, flower respiration was negatively correlated with longevity in spring/summer but a positive correlation between these parameters was found in fall/winter. During spring/summer, flower respiration rate appears to be a good indicator of potential metabolic rate, and flowers with low respiration rates last longer.