Search Results

You are looking at 21 - 30 of 55 items for

  • Author or Editor: James E. Barrett x
  • Refine by Access: All x
Clear All Modify Search
Free access

Trinidad Reyes, Terril A. Nell, and James E. Barrett

`Tara' and `Boaldi' were fertilized with 150 and 450 ppm from 20N–4.7P–16.6K soluble fertilizer and moved at flowering to postproduction conditions (21 ± 2C and 10 μmol·m–2·s–1). Shipping was simulated for 1 week at 26C. `Tara' exhibited burned leaf margins (necrosis) and chlorosis following shipping. At 150 ppm, leaves had brown, dried margins, but the damage did not progress indoors. Necrosis was worse at 450 ppm. Leaf chlorosis/necrosis of non-shipped plants at the 450 fertilizer level did not appear until the 3rd week indoors. At experiment termination, no leaf damage occurred in non-shipped `Tara' or `Boaldi' with 150 ppm. `Boaldi' did not show damage after shipping regardless of the treatment but symptoms (necrosis and wilting of leaves) evolved during the first 2 weeks indoors on plants fertilized with 450 ppm. A 50% reduction in root soluble carbohydrates was found at the highest fertilizer rate at flowering, suggesting that leaf chlorosis/necrosis is related to carbohydrate depletion in chrysanthemum.

Free access

Ahmed A. Al-Badawy, James E. Barrett, and Terril A. Nell

To evaluate importance of paclobutrazol residues on surfaces, begonia (Begonia semperflorens) cv. Whisky and chrysanthemum (Dendranthema grandiflora) cv. Coral Davis plants were grown in flats sprayed with paclobutrazol at 0, 50, 100, 200 and 400 ppm.

For begonia, the plant heights at 2 and 4 weeks after treatments were decreased by 39 to 49% and by 55-69%, respectively. The overall change in height ranged from 2.1 to 4.9 cm compared to 15.3 cm for the control plants.

For chrysanthemum, a reduction in plant height was observed and the overall change in height ranged from 2.9 to 5.6 cm compared to 28.8 cm for the control plants.

Based on these results, there is a potential for paclobutrazol to affect non-target plants when subirrigation is used.

Free access

José A. Monteiro, Terril A. Nell, and James E. Barrett

Five cultivars of potted miniature roses (`Candy Sunblaze', `Lady Sunblaze', `Orange Sunblaze', `Red Sunblaze' and `Royal Sunblaze') were grown until stage 1 (bud showing color with sepals starting to unfold). At this stage one half of the plants were moved to interior conditions (12 μmol s-1 m-2 from cool white fluorescent lights for 12 hr daily and 21 ± 1C) and the other half were maintained in the greenhouse at recommended production conditions. Stage 1 bud respiration, flower respiration at flowering and at 2, 4, 6 and 8 days after flowering were assessed for plants in the greenhouse and under interior conditions. Also, flower interior longevity was assessed for all the cultivars and the correlations between flower longevity and flower respiration at the different stages were analyzed. At flowering and under interior conditions `Red Sunblaze' lasted the longest (23 days) followed by `Orange Sunblaze' (18 days), `Lady Sunblaze' and `Candy Sunblaze' (16 days), and `Royal Sunblaze' (13 days) and flower respiration was 2.08, 2.74, 3.91, 3.59 and 3.94 mg CO2 g-1 hr-1, respectively. In miniature rose, flower longevity was negatively correlated with flower respiration rate (P = 0.01).

Free access

Brent M. Chapman, James E. Barrett, and Terril A. Nell

Catharanthus roseus `Cooler Peppermint' were grown under four different watering regimes [well-watered (WW), wilt plus 1 day (W+1), wilt plus 3 days (W+3), and wilt plus 1 day during the last 2 weeks only (L W+1)] and two different light levels [1100 and 750 μmol·m–2·s–1]. Stress treatments affected finished plant size and leaf area as well as stomatal conductance, water potential and time to wilt during two dry-down periods imposed at the end of an 8-week production cycle. W+3 plants were 50% smaller with 50% less leaf area compared to WW plants. During the second dry-down period, WW plants in high light wilted in 2 days vs 4 days for the W+3 plants. Similarly, WW plants in low light wilted in 3 days vs 6 days for the W+3 plants. The W+3 plants maintained significantly higher water potentials and greater stomatal conductances than the other treatments throughout both dry-down periods.

Free access

Jeff B. Million, James E. Barrett, and Terril A. Nell

Drench applications of paclobutrazol (PBZ) are becoming increasingly popular as a means for controlling height in potted plants, and research is being conducted to quantify the distribution of PBZ following applications. In one trial, 120 ml of 0 or 1 mg 1-1 PBZ were applied to 15-cm pots filled with either Vergro Klay Mix (no bark) or Metro Mix 500 (bark). A bioassay using broccoli (Brassica oleracea L. Italica) seedlings was used to quantify PBZ in leachates and media following treatment drenches. Leachate PBZ concentrations were lower for Vergro than for Metro Mix 500; however, leachates for both media were <0.1 mg·liter–1. Concentrations of PBZ in media decreased with depth and were four to 10 times higher in the uppermost 2.5 cm than in lower horizons. For the uppermost 2.5 cm of media, higher PBZ concentrations were recovered in Metro Mix 500 than in Vergro. A follow-up study will compare surface vs. subsurface application methods on the movement of PBZ into pots.

Free access

Nadia Roude, Terril A. Nell, and James E. Barrett

Plant height, flower diameter, days to flower, and longevity of `Iridon' chrysanthemums [Dendranthemum × grandiflorum (Ramat.) Kitamura] were not affected by various N and K concentrations (112, 225, 337, and 450 mg·liter-1) supplied during the last 5 weeks of production. However, increasing N concentration increased medium conductance, while varying K concentration had no effect on conductance. Visual grade of `Iridon' after 3 weeks in a simulated interior environment showed an interaction between concentrations of N and K. In a second study, growth and longevity of `Iridon' were affected by NH4: NO3 ratios. Plants receiving a 0:1.0 ratio flowered 4 days later than plants receiving a 0.5:0.5 ratio and were taller than plants fertilized with a 1.0:0 ratio. Longevity was greater in plants receiving a 0:1.0 ratio than in those receiving 0.5:0.5 or 0.75:0.25 ratios. Also, longevity was similar in plants receiving NH4: NO3 ratios of 0:1.0, 0.1:0.9, 0.2:0.8, and 0.3:0.7. Plants receiving 0:1.0 lasted 6 days longer than those receiving a 0.4:0.6 ratio.

Free access

José A. Monteiro, Terril A. Nell, and James E. Barrett

Research was conducted to investigate the relationship between flower respiration and flower longevity as well as to assess the possibility of using miniature rose (Rosa hybrida L.) flower respiration as an indicator of potential flower longevity. Using several miniature rose cultivars as a source of variation, four experiments were conducted throughout the year to study flower respiration and flower longevity under interior conditions. For plants under greenhouse as well as interior conditions, flower respiration was assessed on one flower per plant, from end-of-production (sepals beginning to separate) up to 8 days after anthesis. Interior conditions were 21 ± 1 °C and 50 ± 5% relative humidity with a 12-hour photoperiod of 12 μmol·m-2·s-1 (photosynthetically active radiation). Flower respiration was higher if the plants were produced during spring/summer as compared to fall/winter. `Meidanclar', `Schobitet', and `Meilarco' miniature roses had higher flower respiration rates than `Meijikatar' and `Meirutral'. These two cultivars with the lowest respiration rates showed much greater flower longevity if grown during spring/summer as compared to fall/winter. The three cultivars with the higher respiration rates did not show differences in flower longevity between seasons. For plants under greenhouse or interior conditions, flower respiration was negatively correlated with longevity in spring/summer but a positive correlation between these parameters was found in fall/winter. During spring/summer, flower respiration rate appears to be a good indicator of potential metabolic rate, and flowers with low respiration rates last longer.

Free access

José A. Monteiro, Terril A. Nell, and James E. Barrett

The effect of two temperature regimes (29 °C day/24 °C night and 24 °C day/18 °C night) and of a 4-hour night interruption, during production, was studied on postproduction flower longevity and bud drop of 'Meirutral' and 'Meidanclar' potted, miniature roses (Rosa L. sp.). High production temperatures increased postproduction flower longevity and decreased postproduction bud drop. In 'Meidanclar', the high production temperature increased incidence of malformed flowers. No effects of night interruption could be shown on either postproduction flower longevity or bud drop.

Free access

Richard K. Schoellhorn, James E. Barrett, and Terril A. Nell

`Improved Mefo' chrysanthemums were grown at 22C/18C and 34C/28C day/night temperature regimes to evaluate the failure of lateral bud development following pinching of this temperature sensitive cultivar. The number of viable buds on plants at the high temperatures was 40% of number at low temperature. Loss of bud viability was categorized as those buds that were: 1) absent, or 2) those in which growth was present, but inhibited. Inhibited buds were visible swellings surrounded by dense masses of secondary cell wall material. Anatomical studies were completed to verify the absence of lateral buds and determine what cellular changes imposed inhibition on those buds that did develop. A second group of experiments demonstrated that moving low-temperature plants to the high temperature caused production of viable buds to decline. Plants were moved from high temperatures to low, and reciprocally to high from low temperature. Anatomical sampling of apical meristems began at time of shift and at 1, 2, 4, and 8 days after temperature shift. High-temperature meristems possessed predominantly non-viable lateral buds, with few viable buds present.

Free access

Jessica L. Boldt, James E. Barrett, and David G. Clark

Petunia × hybrida `Electric Purple' plants, genetically transformed (Selecta Klemm Co.) via Agrobacterium tumefaciens to constitutively express the Cauliflower Mosaic Virus 35S promoter (CaMV35S) fused to two separate Arabidopsis c-repeat binding factor cDNAs (CBF3 & CBF4), were utilized to evaluate water relations. Non-stressed plants followed a classical stomatal conductance pattern, with maximum conductance between 1000 hr and 1400 hr. CBF3 and CBF4 plants showed an increase in transpiration rates and a decrease in stomatal resistance at 1230 hr, compared to `Electric Purple'. Transpiration rates (per unit leaf area) were similar in CBF3 and `Electric Purple' plants, but CBF4 plants were 12% less than `Electric Purple'. Xylem water potentials at visible wilt were between –1.4 and –1.5 MPa and there were no significant differences between line or irrigation treatment. A fourth experiment observed differential plant responses to stress cycles. Under non-stress irrigation conditions, CBF4 plants showed an increase in stomatal resistance and a decrease in transpiration rate compared to `Electric Purple' plants. There were no differences in the xylem water potential at visible wilt for the first and third stress cycles, but, for the second cycle, xylem water potentials at wilt were –1.9, –1.7 and –1.4 Mpa for CBF4, `Electric Purple' and CBF3 plants, respectively. CBF3 and CBF4 plants showed small differences in performance as compared to `Electric Purple' and under mild stress conditions as imposed in these experiments apparent heterologous overexpression of the Arabidopsis CBF3 & 4 transgenes may not be sufficient for conferring drought tolerance in petunia.