Search Results

You are looking at 21 - 30 of 33 items for

  • Author or Editor: J.J. Ferguson x
  • Refine by Access: All x
Clear All Modify Search
Free access

Leonor F.S. Leandro, Lisa M. Ferguson, Frank J. Louws, and Gina E. Fernandez

Strawberry (Fragaria ×ananassa Duchnesne) growth and productivity were compared in fumigated and nonfumigated production systems. Strawberry transplants grown in potting mix amended with Trichoderma hamatum (Bonord.) Bainier, strain T382, Trichoderma harzianum Rifai, strain T22, or untreated, were planted in field plots treated with compost, compost amended with T. hamatum strain T382, Telone-C35, or not treated. Plants were sampled throughout the growing season, and dry weights of roots, crowns, leaves, flowers and fruit, leaf area, and total and marketable yield were determined. Trichoderma amendments to the potting mix improved plant dry weight and leaf area of strawberry transplants in the first year and suppressed root rot incidence in the second year but did not affect plant growth or disease incidence once the plants were set in the field. Field plants in fumigated plots had greater root, leaf, and crown dry weights, leaf area, and yield compared with plants in the other soil treatments. We conclude that Trichoderma amendments (1) alone had little benefit to plug plant growth and (2) in combination with compost, had no benefit to strawberry plant growth in the field. The task remains to develop a reliable and sustainable strawberry production system that does not rely on chemical fumigants.

Free access

Louise Ferguson, Hesham Gawad, G. Steven Sibbett, Mark Freeman, and James J. Hatakeda

A stepwise multiple regression analysis, using payment by processors as the dependent variable (Y) and numerous physical and chemical characteristics as the independent variables (X), demonstrated that the primary factor determining `Manzanillo' olive (Olea europaea L.) value at harvest was size. Optimal crop value correlated strongly with the combined percentage of standard, medium, large, and extra-large olives; R' values were 0.93***, 0.93***, and 0.42 (ns) in 1984, 1985, and 1986, respectively. As the harvest season progressed, increased percentages of olives within these size classifications, not weight increases of individual olives within the size categories, produced the increase in value. Individual olives within size categories maintained the same weight through the harvest season, regardless of tree crop load. The best criterion for predicting optimal harvest time “is the total percentage of standard, medium, large, and extra-large olives.

Open access

Lu Zhang, Emilio Laca, Cara J. Allan, Narges M. Mahvelati, and Louise Ferguson

Knowing a tree crop’s seasonal growth and development as a function of heat accumulation can facilitate scheduling of irrigation, pesticide applications, and harvest. Our objective was to compare the goodness of fit of applied models and determine which provides the best description of pistachio nut growth as a function of thermal unit accumulation. Three fruit growth traits of pistachio—pericarp (hull) + endocarp (shell) size, endocarp thickening and hardening, and embryo (kernel) size—exhibited clear nonlinear dependence on heat accumulation. We tested three nonlinear models—Michaelis–Menten, three-parameter logistic, and Gompertz—fitted to fruit development data to create a tool to forecast pest susceptibility and harvest timing. Observation of development began at full bloom and ended at harvest. Data were collected from six pistachio cultivars in one experimental and eight commercial orchards over 3 years. Analyses of residual distribution, parameter standard errors, coefficient of determination (R 2) and the Akaike information criterion (AIC) all demonstrated the Gompertz function was the best model. Cultivars differed significantly in all the three parameters (Asym, b, and c) for all three traits with the Gompertz model, demonstrating the Gompertz model can adjust to incorporate cultivar differences. The growth curve of the three traits together provided integrated information on nut biomass accumulation that facilitates predicting the critical timing for multiple orchard management practices.

Full access

Michael B. Thomas, Jonathan H. Crane, James J. Ferguson, Howard W. Beck, and Joseph W. Noling

The TFRUIT·Xpert and CIT·Xpert computerbased diagnostic programs can quickly assist commercial producers, extension agents, and homeowners in the diagnosis of diseases, insect pest problems and physiological disorders. The CIT·Xpert system focuses on citrus (Citrus spp.), whereas the TFRUIT·Xpert system focuses on avocado (Persea americana Mill.), carambola (Averrhoa carambola L.), lychee (Litchi chinensis Sonn.), mango (Mangifera indica L.), papaya (Carica papaya L.), and `Tahiti' lime (Citrus latifolia Tan.). The systems were developed in cooperation with research and extension specialists with expertise in the area of diagnosing diseases, disorders, and pest problems of citrus and tropical fruit. The systems' methodology reproduces the diagnostic reasoning process of these experts. Reviews of extension and research literature and 35-mm color slide images were completed to obtain representative information and slide images illustrative of diseases, disorders, and pest problems specific to Florida. The diagnostic programs operate under Microsoft-Windows. Full-screen color images are linked to symptoms (87 for CIT·Xpert and 167 for TFRUIT·Xpert) of diseases, disorders, and insect pest problems of citrus and tropical fruit, respectively. Users can also refer to summary documents and retrieve management information from the Univ. of Florida's Institute of Food and Agricultural Sciences extension publications through hypertext links. The programs are available separately on CD-ROM and each contains over 150 digital color images of symptoms.

Full access

Laura Guazzelli, Frederick S. Davies, James J. Ferguson, and William S. Castle

Two experiments were conducted with container-grown `Hamlin' orange trees [Citrus sinensis (L.) Osb.] on `Swingle' citrumelo [C. paradisi Macf. × Poncirus trifoliata (L.) Raf.] rootstock to study the effects of N rate on plant growth in the nursery. Treatments consisted of 12, 50, 100, or 200 mg N/liter per tree applied once a week by drip irrigation. Commercial media was used and soil water content was maintained at container capacity. In Expt. 1, fertilization at 200 mg·liter−1 resulted in greater scion growth, trunk diameter, and total leaf dry weight compared to the other rates. In Expt. 2, fertilization at 100 and 200 mg·liter−1 resulted in greater scion growth,” trunk diameter, and leaf and stem dry weights compared to lower rates, but no differences were observed between the two highest rates. Trees that received 12 and 50 mg·liter−1 were stunted and leaves were chlorotic. Therefore, the optimum calculated N rate for `Hamlin' nursery trees on `Swingle' citrumelo rootstock, based on critical level analysis, is 155 to 165 mg·liter-1.

Free access

M.S. Tian, A.B. Woolf, J.H. Bowen, and I.B. Ferguson

Hot water treatments (HWTs), at a range of temperatures (43 to 55C) and durations (10 sec to 30 min), were applied to floret groups of `Shogun' broccoli (Brassica oleracea L. var italica) directly after harvest. Floret groups were then stored at 20C in the dark for 3 days. A range of optimal treatments was found in which yellowing was markedly reduced, and heat damage (water soaking and decay) did not occur. Chlorophyll fluorescence measurements indicated that in the optimum treatment that prevented yellowing the Fv/Fm ratio following HWT decreased immediately and was maintained at a constant level for the next 3 days. A further experiment examined the effect of HWT durations up to 20 min at 47C on fluorescence and yellowing. Longer durations of HWTs (>5 min) progressively reduced yellowing and the Fv/Fm ratio. From these three experiments a HWT of 47C for 7.5 min was selected as the best treatment. This treatment consistently reduced yellowing for up to 5 days. A decrease in the Fv/Fm ratio may be a useful indicator of broccoli florets response to hot water treatments.

Free access

Jose Linares, Johannes Scholberg, Kenneth Boote, Carlene A. Chase, James J. Ferguson, and Robert McSorley

Citrus is one of the most important crops in Florida. During the past decade, increased international competition and urban development, diseases, and more stringent environmental regulations have greatly affected the citrus industry. Citrus growers transitioning to organic production may benefit from premium prices, but they also face many challenges, including development of effective weed management strategies. Cover crops (CC) may constitute an environmentally sound alternative for improved weed management in organic systems. Two field experiments were conducted at Citra in north central Florida from 2002 to 2005, to evaluate the effectiveness of annual and perennial CC to suppress weeds in organic citrus groves. To quantify and compare the effectiveness of CC to suppress weed growth, a new weed suppression assessment tool, the cover crop/weed index (CCWI), was developed using the ratio of biomass accumulation of CC and weeds. Annual summer CC accumulated more biomass in comparison with winter CC. Sunnhemp (Crotalaria juncea L.), hairy indigo (Indigofera hirsuta L.), cowpea (Vigna unguiculata L. Walp.), and alyceclover (Alysicarpus vaginalis L.) all provided excellent weed suppression, which was superior to tillage fallow. Single-species winter CC did not always perform consistently well. Use of winter CC mixtures resulted in more consistent overall CC performance, greater dry matter production, and more effective weed suppression than single species of CC. Initial perennial peanut (PP) growth was slow, and summer planting of PP (Arachis glabrata Benth.) was determined to be the most effective date in terms of weed suppression, which was improved gradually over time, but all planting dates resulted in slow initial growth compared with annual CC. For both PP and annual CC, weed biomass typically was inversely related to CC dry weight accumulation resulting from competition for resources. The CCWI was a suitable tool to quantify CC performance in terms of weed suppression.

Free access

Jin-Hu Wu, A. Ross Ferguson, Brian G. Murray, Alison M. Duffy, Yilin Jia, Canhong Cheng, and Philip J. Martin

Fruit of colchicine-induced tetraploids of Actinidia chinensis were 50% to 60% larger than those of their diploid progenitors. In addition to fruit size, fruit quality is a key issue in any commercialization of these autotetraploids. We have made the first detailed study of the effects of chromosome doubling on fruit quality parameters other than size: these attributes include flesh firmness, color, soluble solid content (SSC), dry matter content (DM), vitamin C content, fruit skin thickness, and red pigmentation distribution in red-fleshed kiwifruit. Four selections from colchicine-induced tetraploids from the yellow-fleshed kiwifruit cultivar Hort16A were trialed for the stability of their fruit quality. Analysis of fruit at harvest over 3 years showed that fruit of the induced autotetraploids were significantly softer (lower flesh firmness), had lower DM, and had a less intense golden flesh color than fruit of their diploid progenitor. During development, SSC of fruit of the autotetraploid plants started to increase earlier than in the diploid ‘Hort16A’. This has been confirmed by replicated trials. No difference was found in vitamin C content between fruit of autotetraploids and diploids. Autotetraploids had significantly thicker skins than diploid ‘Hort16A’. Induced autotetraploids from three female genotypes of red-fleshed A. chinensis showed similar trends to autotetraploids of ‘Hort16A’ in fruit flesh firmness and outer pericarp flesh color, DM, SSC, and vitamin C. All the traits analyzed indicated that fruit of the autotetraploid plants matured earlier than those of their diploid progenitors. Furthermore, red pigmentation, one of the most important traits for red-fleshed kiwifruit breeding, showed a reduction in both intensity and distribution in the autotetraploids compared with their diploid progenitors. There was considerable variation among fruit of autotetraploid plants regenerated from each diploid progenitor. Therefore, selection among the regenerants may be required to achieve the best outcome after ploidy manipulation in kiwifruit breeding.

Free access

L. Ferguson, J.A. Poss, S.R. Grattan, C.M. Grieve, D. Wang, C. Wilson, T.J. Donovan, and C.-T. Chao

Performance of `Kerman' pistachio (Pistacia vera L.) trees on three rootstocks (P. atlantica Desf., P. integerrima Stewart and `UCB-1', a P. atlantica × P. integerrima hybrid) was evaluated with 2-year-old trees grown in sand-tank lysimeters under combined SO4 2- and Cl- salinity and boron (B) stress for 6 months. Four salinity treatments were imposed by irrigating the plants with water at electrical conductivity (ECiw) of 3.5, 8.7,12, or 16 dS·m-1 each containing B at 10 mg·L-1. Growth of `Kerman' was evaluated based on increase in total leaf area, increase in trunk diameter, and total above-ground biomass production. All growth parameters decreased as salinity increased, but were not significant until ECiw exceeded 12 dS·m-1. However, growth of `Kerman' on P. atlantica and `UCB-1' was considerably better than on P. integerrima at 16 dS·m-1. The onset and severity of foliar injury differed among scions and treatments and was attributed primarily to B toxicity, rather than the effects of salinity. Concentrations of B in injured leaf tissue ranged from 1000 to 2500 mg·kg-1. Leaf injury decreased with increasing salinity, although leaf B was not significantly reduced suggesting an internal synergistic interaction between B and other mineral nutrients. However for P. vera on P. integerrima, the highest level of salinity produced the greatest injury, possibly as a combination of B plus Cl- and/or Na+ toxicity. Leaf transpiration, stomatal conductance, and chlorophyll concentration of P. vera, determined by steady-state porometry, were also reduced to a greater degree by combined salinity and B when budded on P. integerrima than on the other two rootstocks.

Full access

Olha Sydorovych, Charles D. Safley, Rob M. Welker, Lisa M. Ferguson, David W. Monks, Katie Jennings, Jim Driver, and Frank J. Louws

Partial budget analysis was used to evaluate soil treatment alternatives to methyl bromide (MeBr) based on their efficacy and cost-effectiveness in the production of tomato (Solanum lycopersicum). The analysis was conducted for the mountain tomato production region based on 6 years of field test data collected in Fletcher, NC. Fumigation alternatives evaluated included 61.1% 1,3-dichloropropene + 34.7% chloropicrin (Telone-C35™), 60.8% 1,3-dichloropropene + 33.3% chloropicrin (InLine), 99% chloropicrin (Chlor-o-pic), 94% chloropicrin (TriClor EC), 42% metam sodium (4.26 lb/gal a.i., Vapam), and 50% iodomethane + 50% chloropicrin (Midas). The MeBr formulation was 67% methyl bromide and 33% chloropicrin (Terr-O-Gas). Chloropicrin applied at 15 gal/acre provided the greatest returns with an additional return of $907/acre relative to MeBr. Telone-C35 provided an additional return of $848/acre and drip-applied metam sodium provided an additional return of $137/acre. The return associated with broadcast applied metam sodium was about equal to the estimated return a grower would receive when applying MeBr. Fumigating with a combination of chloropicrin and metam sodium; shank-applied chloropicrin at 8 gal/acre; drip-applied chloropicrin, Midas, or InLine; and the nonfumigated soil treatment all resulted in projected losses of $156/acre, $233/acre, $422/acre, $425/acre, $604/acre, and $2133/acre, respectively, relative to MeBr. Although technical issues currently associated with some of the MeBr alternatives may exist, results indicate that there are economically feasible fumigation alternatives to MeBr for production of tomatoes in North Carolina.