Search Results

You are looking at 21 - 26 of 26 items for

  • Author or Editor: Frank Kappel x
  • Refine by Access: All x
Clear All Modify Search
Free access

David M. Hunter, Frank Kappel, Harvey A. Quamme, W. Gordon Bonn, and Kenneth C. Slingerland

Free access

Peter M.A. Toivonen, Frank Kappel, Sabina Stan, Darrell-Lee McKenzie, and Rod Hocking

A convenient and reliable method that used a specially designed tool to apply a uniform bruising force in situ was developed to assess the relative susceptibility to fruit surface pitting in sweet cherry. Assessment of pitting with a visual scale after 2 weeks of 1 °C storage was found to be in close agreement with measurements of pit diameter. Using this method `Bing' showed the greatest susceptibility to pitting in both years of the study and `Bing', `Lapins', and `Sweetheart' cherries showed a decline in susceptibility as fruit matured. The predictive value of fruit firmness at harvest, fruit respiration at harvest, and weight loss in storage was assessed in relation to the severity of pitting. The model to best describe pitting was found to include all three physiological variables (firmness, respiration, and weight loss). While an acceptable model was obtained when combining all three cultivars, the best models were achieved when each cultivar was considered separately. It was concluded that there are likely unmeasured variables involved in determining susceptibility to pitting. Hence the best approach to predicting pitting susceptibility is the application of the pit-induction method described in this work.

Free access

Frank Kappel, W. David Lane, Richard MacDonald, Karlis Lapins, and Hans Schmidt

Free access

Frank Kappel, W. David Lane, Richard MacDonald, Karlis Lapins, and Hans Schmid

Free access

Lili Zhou, Frank Kappel, Cheryl Hampson, Paul A. Wiersma, and Guus Bakkeren

Amplified fragment length polymorphisms (AFLPs) were used to analyze the relationships between sweet cherry (Prunus avium L.) cultivars and selections from the breeding program at the Pacific Agri-Food Research Centre in Summerland, Canada. Six pairs of preselected primers were used for the analysis of a total of 67 cultivars and selections. Scoring the absence and presence of 118 polymorphic DNA fragments produced a unique binary code for each cultivar and selection. Two phylogenetic trees were constructed using these 118 polymorphic fragments, one tree for 55 related cultivars and selections from the Summerland breeding program and the other for 23 self-incompatible cultivars of differing origins. The reliability of AFLP DNA fingerprints was confirmed by correlating relationships revealed by AFLP profiles with known genetic relationships of some sweet cherry cultivars and by a blind test for cultivar identification. Results indicate that AFLP analysis is a good technique to evaluate genetic distance and relationships in a sweet cherry breeding population.

Free access

David M. Hunter, Phil Pinsonneault, Frank Kappel, Harvey A. Quamme, W. Gordon Bonn, and Richard E.C. Layne