Search Results

You are looking at 21 - 22 of 22 items for

  • Author or Editor: David H. Picha x
  • Refine by Access: All x
Clear All Modify Search
Open access

Duane N. Chisholm and David H. Picha

Abstract

Sugars and organic acids in ripe ‘Charleston Gray’ and ‘Jubilee’ watermelons [Citrullus lanatus (Thunb.) Matsum & Nakai] were measured at harvest and after 14 or 19 days of storage at 0°, 7°, 16°, 23°, or 27°C. Soluble solids content (SSC), sucrose, fructose, and glucose concentrations mostly did not change during storage at 0°, but all generally were reduced at the higher temperatures. ‘Charleston Gray’ contained about 3% to 4% sucrose, 2% to 3% fructose, and 1.0% to 1.5% glucose. Fructose was the major sugar in ‘Jubilee’, followed by sucrose and glucose. Malic acid was the major organic acid in both cultivars. Temperature of storage had little effect on malic acid concentration. The concentration of citric acid decreased during storage at 23° or 27°, but not consistently at low temperatures.

Open access

Duane N. Chisholm and David H. Picha

Abstract

Concentrations of the major sugars and organic acids within ripe ‘Charleston Gray’ and ‘Jubilee’ watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai] flesh were quantified in 5 different regions. The percentage of soluble solids (%SS) in both cultivars and the percentage of sucrose in ‘Charleston Gray’ were highest in the heart region, followed by the blossom end, and lowest in the stem end. Glucose, malic acid, and citric acid were generally higher in the heart and blossom end compared to the stem end, while fructose was higher in the blossom end than stem end. No significant differences between the top side and the soil side were found for any of the sugars or organic acids. Fructose was the major sugar in all regions in ‘Jubilee’, whereas the major sugar in ‘Charleston Gray’ (sucrose or fructose) depended on the region. Malic acid was the primary organic acid in all regions of both cultivars.