Search Results

You are looking at 21 - 30 of 50 items for

  • Author or Editor: Christopher S. Cramer x
  • Refine by Access: All x
Clear All Modify Search
Free access

Christopher S. Cramer and Todd C. Wehner

Plant breeders often measure selection progress for yield by measuring the hybrid performance (combining ability) of a breeding line. This information is used to develop breeding lines with higher combining ability. The objectives of this study were to measure the specific combining ability for yield traits over three selection cycles from four slicing cucumber populations with `Poinsett 76', a popular slicing cucumber cultivar; and to determine the change in specific combining ability for yield traits in four populations improved through recurrent selection. Four slicing cucumber populations, North Carolina wide base slicer (NCWBS), medium base slicer (NCMBS), elite slicer 1 (NCES 1), and Beit Alpha 1 (NCBA1), were developed and improved through modified half-sib selection from 1983 to 1992 to improve yield per se and fruit quality in each population. Eleven families were randomly selected from each of three selection cycles (early, intermediate, advanced) from each population and were hybridized to `Poinsett 76'. Twenty-three seeds from each cross were planted in 1.2-m plots in Spring and Summer 1995. When 10% of fruit were oversized (>50 mm in diameter), plants were sprayed with paraquat to defoliate them and to simulate once-over harvest. The experimental design was a randomized complete block with 22 replications per population arranged in a split plot with the four populations as whole plots and the three cycles as subplots. The combining ability for early and marketable yield of NCWBS and NCBA1 increased as the number of selection cycles increased. Conversely, selection for higher yield per se decreased the combining ability of the NCES 1 population for early and marketable yield. The NCBA1 population exhibited the largest gain (131.2%) from cycle 0 to 8 averaged over all traits. Early yield exhibited the largest gain (60.8%) averaged over all populations.

Free access

Troy A. Larsen* and Christopher S. Cramer

New Mexico onion production will begin using mechanical harvesters in the near future in order to stay competitive in today's market. Past onion breeding objectives have focused on improving onions for hand harvesting instead of mechanical harvesting. Our breeding program is starting to evaluate germplasm for bulb firmness. The objectives of this study were to evaluate hybrid lines for their bulb firmness, to compare two methods of measuring bulb firmness, and to compare bulb firmness using two different production schemes. Bulb firmness of spring-transplanted and spring-seeded intermediate-day hybrid breeding lines was measured using a digital FFF-series durometer and a subjective rating of firmness achieved by squeezing bulbs. Bulbs were rated on a scale of 1 (soft) to 9 (hard). In general, these hybrid lines produced very firm to hard onions whether the lines were transplanted or direct-seeded. Bulb firmness of these lines measured with the durometer was greater when the lines were direct-seeded (74.9) than when transplanted (73.5). Conversely, when firmness was measured with our subjective rating, transplanted onions exhibited slightly greater firmness (8.9) than direct-seeded onions (8.8). For both transplanted and direct-seeded onions, durometer readings were weakly correlated in a positive fashion with our subjective rating. In general, durometer readings gave a greater spread in firmness measurements with a range of 69.6 to 77.8 in firmness values. Subjective ratings of bulb firmness ranged from 8.5 to 9.0. Depending on the firmness of evaluated breeding lines, our subjective rating system should be adjusted to better distinguish firmness differences between bulbs.

Free access

Troy A. Larsen* and Christopher S. Cramer

Current onion varieties that are grown in New Mexico were developed for hand harvesting and not for mechanical harvesting. In order for onion production in New Mexico to remain a viable commodity, firmer onion varieties need to be developed for mechanical harvesting. In this study, bulb firmness of onions was examined in short and intermediate-day onion entries comparing a qualitative `finger pressure' method with a digital FFF-series durometer. After harvesting and curing of the onion bulbs, dry outer scales were removed before durometer measurements were taken at two perpendicular points on the vertical center axis of the bulb. Following the durometer measurements, bulb firmness was rated by `finger pressure' applied to multiple points on the vertical center axis. For intermediate and late-maturing entries, durometer measurements and firmness rating were positively correlated in a strong fashion (r = 0.77 to 0.87). Early maturing entries, NMSU 02-25 and NMSU 02-03 both had high durometer averages and firmness ratings. `NuMex Crimson' and `NuMex Crispy' had the highest durometer averages and firmness ratings among intermediate maturing entries while `NuMex Solano' and NMSU 01-06 had the highest among late maturing entries. From our results, the durometer can be useful in providing a quantifiable measure of bulb firmness.

Free access

Christopher S. Cramer and Joe N. Corgan

Free access

Christopher S. Cramer and Joe N. Corgan

Free access

Christopher S. Cramer and Joe N. Corgan

Free access

Christopher S. Cramer and Larry D. Robertson

Numerous short-day onion accessions maintained at the Plant Genetic Resources Unit (PGRU) of Geneva, N.Y., were in danger of being lost from the U.S. germplasm collection due to sub-standard viability and low seed supply of those accessions. Seed regeneration of short-day onions at Geneva, N.Y., has been difficult because of improper daylengths and environmental conditions. A project was initiated in Sept. 2001 between PGRU and the onion breeding program at New Mexico State University to regenerate 75 accessions that were in the most danger of being lost from the collection. Even though germination rates were low for most accessions, plants were recovered from 72 accessions. Two accessions did not produce bulbs as it was likely they were long-day accessions. Of the remaining accessions, two accessions produced bulbs but did not produce seed. Several accessions bolted during bulb production and plants were covered with crossing cages, crosses were made, and seed was collected. Seed of 54 accessions were sent to PGRU to be incorporated back into the collection and to become available for distribution. Seventeen accessions produced less than 35 g of seed and were retained in order to produce additional seed in a second regeneration step. Some of the short-day accessions that have become available include `Amarela Globular Rio Grande', `Babosa', `Baia Performe Sintese No. 22', `Beth Alpha', `Burgundy', `California Early Red', `Dehydrator No. 5', `Early Crystal', `Eclipse L303', `Imperial 48', `New Mexico Yellow Grano', `Pusa Red', `Red Bermuda', `Red Creole', `Red Grano', `Red Patna', and `Rio Grande'.

Free access

Parminder Singh Multani and Christopher S. Cramer

Identification of resistant cultivars offers the best control for Iris yellow spot virus (IYSV), a new onion disease vectored by Thrips tabaci. In this study, 18 spring-seeded onion cultivars were screened for IYSV. Each alternate plot in the field was planted with infected bulbs from the previous year to serve as a source of virus inoculum and thrips. With increased thrips population and temperature over time, straw-colored, necrotic lesions typical to IYSV infection were observed on plant leaves. Plants were analyzed by enzyme linked immunosorbant assay to confirm the IYSV infection and determine the virus titer. Ten randomly selected plants from each plot were rated for IYSV symptoms on a scale of 1 to 9, with 1 representing no symptomatic tissue and 9 representing more than 50% tissue damage. Starting 1 June, disease ratings were collected each week until 13 July. Nearly all cultivars showed similar disease symptoms when rated on 1 June. By 29 June, NMSU 03-52-1 exhibited some tolerance to IYSV as fewer symptoms were observed. By 13 July, NMSU 03-52-1 exhibited fewer disease symptoms than most of the other cultivars tested, while `Caballero' showed the highest IYSV symptoms. All other cultivars showed low to high susceptibility for IYSV. The increase in disease severity was accompanied by a relative increase in the virus titer of plants over time. However, virus titer poorly correlated with the amount of disease symptoms in different cultivars. The most tolerant cultivar, NMSU 03-52-1, had higher virus titer than many susceptible cultivars but still performed well. Conversely, some cultivars with low virus titer were susceptible and developed more symptoms. This indicates a difference in the capabilities of different cultivars to resist IYSV.

Free access

Christopher S. Cramer and Joe N. Corgan

Free access

Christopher S. Cramer and Joe N. Corgan