Search Results

You are looking at 21 - 26 of 26 items for

  • Author or Editor: Carl J. Rosen x
  • Refine by Access: All x
Clear All Modify Search
Full access

Carl J. Rosen, Thomas R. Halbach, and Bert T. Swanson

Composting of municipal solid waste (MSW) has received renewed attention as a result of increasing waste disposal costs and the environmental concerns associated with using landfills. Sixteen MSW composting facilities are currently operating in the United States, with many more in the advanced stages of planning. A targeted end use of the compost is for horticultural crop production. At the present time, quality standards for MSW composts are lacking and need to be established. Elevated heavy metal concentrations in MSW compost have been reported; however, through proper sorting and recycling prior to composting, contamination by heavy metals can be reduced. Guidelines for safe metal concentrations and fecal pathogens in compost, based on sewage sludge research, are presented. The compost has been shown to be useful in horticultural crop production by improving soil physical properties, such as lowering bulk density and increasing water-holding capacity. The compost can supply essential nutrients to a limited extent; however, supplemental fertilizer, particularly N, is usually required. The compost has been used successfully as a sphagnum peat substitute for container media and as a seedbed for turf production. High soluble salts and B, often leading to phytotoxicity, are problems associated with the use of MSW compost. The primary limiting factor for the general use of MSW compost in horticultural crop production at present is the lack of consistent, high-quality compost.

Free access

Amy J. Moberg, James J. Luby, Carl J. Rosen, and Peter D. Ascher

Accessions of Vaccinium species (deliciosum, ovalifolium, membranaceum, parvifolium, scoparium) were evaluated for tolerance to higher pH in the root zone using an in vitro screening procedure. Seeds were germinated on media containing all essential nutrients with nitrogen in the nitrate form at pH 5 and pH 6 and evaluated for 21 weeks. Excess EDTA was used to buffer the micronutrients and pH was buffered by MES and succinic acid. Germination varied among species with V. ovalifolium being highest and V. parvifolium not germinating at all. Mortality was lower at pH 5. At pH 6, V. ovalifolium and V. membranaceum exhibited variation for growth while all other species suffered complete mortality.

Free access

Chad E. Finn, James J. Luby, Carl J. Rosen, and Peter D. Ascher

Progenies from crosses among eight highbush (Vaccinium corymbosum L.), lowbush (V. angustifolium Ait.), and V. corymbosum/V. angustifolium hybrid-derivative parents were evaluated in vitro at low (5.0) and high (6.0) pH for vitality, height, and dry weight. Succinic acid and 2[N- morpholino]ethanesulfonic acid (Mes) effectively maintained pH in the medium and rhizosphere. The pH regime did not affect percent radicle emergence from seed or survival; however, percent seed germination was slightly lower at high pH. The parental general combining ability (GCA), reciprocal and maternal, but not the specific combining ability (SCA) variance components were significant for plant vitality, height, and dry weight. The GCA variance components were six to 26 times larger than the SCA variance components for the plant growth traits. Variation due to pH regime was significant for vitality and dry weight but not for plant height. The progenies of parents with high percent lowbush ancestry were taller at both pH levels than those with less such ancestry. Little variation was apparent for higher pH tolerance as measured by dry weight; however, the GCA effects suggested that the progenies of some parents performed better than others at high pH. Vaccinium angustifolium parents differed in the extent to which tolerance to high pH was transmitted. In vitro screening in concert with a traditional breeding program should be effective in improving blueberry tolerance to higher pH.

Free access

Chad E. Finn, James J. Luby, Carl J. Rosen, and Peter D. Ascher

Thirty-three seedling progenies from crosses among Vaccinium corymbosum L., V. angustifolium Ait., and V. corymbosum/V. angustifolium hybrid-derivative parents, and `Northblue', `Northsky', and `Northcountry' were grown for 2 years at three soil pH levels at Becker, Minn. Iron sulfate and lime were incorporated to amend the soil to pH levels of 4.0 and 6.5, respectively; the native soil, pH 4.5, was the third pH regime. The plants grew well in the low pH regime, poorly in the high pH regime, and intermediately in the native pH regime. Variation among populations was significant for all traits except vitality 18 months after being planted, and pH treatment affected all traits. The pH regime × population interactions were not significant for any of the plant performance characteristics. Nondestructive subjective and objective measurements were positively and highly correlated with total plant dry weight. Therefore, populations could be effectively evaluated for tolerance to higher pH without destroying the plant. Vaccinium angustifolium was not a general source of tolerance to higher pH, but some populations derived from V. angustifolium were tolerant of high soil pH.

Free access

Chad E. Finn, Carl J. Rosen, James J. Luby, and Peter D. Ascher

Seedlings from crosses among Vaccinium corymbosum L., V. angustifolium Ait, and V. corymbosum/V. angustifolium hybrid-derivative parents, and micropropagated `Northblue', `Northsky', and `Northcountry' plants, were grown for 2 years at Becker, Minn., in low (5.0) and high (6.5) soil pH regimes. Nutrient composition expressed as a concentration and total content was determined for P, K, Ca, Mg, Fe, Mn, Zn, Cu, and B in the aboveground portion of the plant. Except for Fe, the pH regime effects on aboveground plant nutrient concentration and total content were much larger than population or population × pH regime interaction effects. Population × pH regime interactions were detected for all nutrients expressed as a concentration, except for P. Generalizations about plant performance and nutrient concentration of the plant could only be made in the context of a given pH regime. At low pH, P and Mn tissue concentrations increased and Ca, Mg, and B concentrations decreased as the percentage of lowbush ancestry increased. At high pH, K, Cu, and B concentrations decreased as the percentage of lowbush ancestry increased. Overall plant performance on the higher pH soils appeared to be positively correlated to aboveground tissue concentrations of Mn, K, and Cu. When expressed as total content, population × pH regime effects were only significant for tissue Mn. Differences in total nutrient content attributed to soil pH were primarily related to differences in plant dry weight.

Free access

Carl J. Rosen, Peter M. Bierman, Adriana Telias, and Emily E. Hoover

Application of calcium (Ca) sprays is a recommended practice to reduce the incidence of Ca-related disorders such as bitter pit in apple (Malus ×domestica), but effectiveness of sprays to increase Ca concentrations in the fruit is not always consistent. Strontium (Sr) has been used as a Ca analog to evaluate Ca transport processes and distribution in plants. A field study was conducted using foliar- and fruit-applied Sr as a tracer for Ca transport in 20-year-old `Honeycrisp' apple trees on Malling.26 (M.26) rootstock. The objectives of this study were to 1) measure the amount of Sr translocation from leaves to fruit, 2) determine the effectiveness of eight sprays applied over the growing season vs. four late-season sprays on increasing Sr concentrations in leaves and fruit, and 3) evaluate the effect of an experimental adjuvant consisting of alkyl-polysaccharides and monosaccharides on spray efficacy. Seven treatments were tested, which included a control and six Sr treatments applied in various combinations with or without an adjuvant. Trees were sprayed four or eight times during the growing season, either directly to leaves and fruit or to leaves only (fruit covered during application). Spray treatments did not significantly affect total fruit fresh or dry weight. Although some discrimination between Ca and Sr was detected, the similar distribution of Ca and Sr in fruit tissue of control treatments suggested that Sr is a suitable tracer for Ca. Based on the covered vs. uncovered fruit treatments, about 11% to 17% of the Sr in the fruit came from Sr applied directly to the leaves. Eight spray applications over the growing season more than doubled both the concentration and content of fruit Sr compared with four late season sprays. The tested adjuvant doubled Sr absorption by and translocation to fruit compared with not using an adjuvant. Assuming similar transport for Ca and Sr, and adjusting for the atomic weight of Ca relative to Sr, the maximum increase in fruit Ca concentration at harvest from foliar and fruit applications (eight sprays with adjuvant and uncovered fruit) would have been as follows: core = 78 mg·kg–1; flesh = 35 mg·kg–1; peel = 195 mg·kg–1; entire fruit = 67 mg·kg–1. In addition to being an underused tool for studying Ca transport patterns, the results also suggest that use of Sr may be a novel technique for testing the efficacy of various adjuvants used to enhance uptake and transport of Ca in leaves and fruit.