Search Results

You are looking at 11 - 20 of 68 items for

  • Author or Editor: Zhanao Deng x
  • Refine by Access: All x
Clear All Modify Search
Free access

Zhanao Deng and Brent K. Harbaugh

Gerbera (Asteraceae Dumont) is one of the most important floricultural crops in the United States and worldwide (Behnke, 1984; Rogers and Tjia, 1990). It has been commercially produced in Europe since the turn of the 20th century and in North America since the early 1920s (Rogers and Tjia, 1990). Continuous introduction of new cultivars with improved or novel horticultural characteristics has been one of the major driving forces for the popularity of this flower (Behnke, 1984; Rogers and Tjia, 1990).

Gerbera breeding was pioneered in England in the 1890s (

Free access

Zhanao Deng and Brent K. Harbaugh

Cultivated gerbera (Gerbera hybrida, Asteraceae Dumont) is one of the most important floricultural crops in the United States and worldwide (Behnke, 1984; Rogers and Tjia, 1990). It is well accepted in the cut flower and potted plant markets and can also be grown as a patio, garden, or landscape plant. Gerbera breeding over the past several decades has been focused primarily on developing cultivars for cut flower production or for small flowering pot plants to be used in flower beds (Behnke, 1984; Rogers and Tjia, 1990). Cut flower cultivars require

Free access

Zhanao Deng and Brent K. Harbaugh

The sporadic nature of inflorescence production and flower protogyny in caladium (Caladium ×hortulanum Birdsey) makes it desirable to store pollen and to rapidly assess its viability for cross-pollinations in breeding programs. This study was conducted to develop a procedure to determine caladium pollen viability and to use that procedure to evaluate the effect of short-term storage conditions on pollen viability. The sucrose level in the culture medium was found to have a significant impact on the in vitro germination of caladium pollen; a concentration of 6.8% was determined to be optimal for pollen germination. Caladium pollen lost viability within 1 day under room (24 °C) or freezing (-20 °C) temperatures, but could be stored at 4 °C for 2 to 4 days. Pollen stored at 4 °C produced successful pollinations. Data obtained from large-scale greenhouse pollinations supported use of this in vitro germination assay as a convenient way to evaluate caladium pollen viability (and fertility).

Full access

Zhanao Deng and Brent K. Harbaugh

Caladium (Caladium ×hortulanum) leaves can be injured at air temperatures below 15.5 °C. This chilling sensitivity restricts the geographical use of caladiums in the landscape, and leads to higher fuel costs in greenhouse production of pot plants because warmer conditions have to be maintained. This study was conducted to develop procedures to evaluate differences among caladium cultivars for chilling sensitivity and to identify cultivars that might be resistant to chilling injury. The effects of two chilling temperatures (12.1 and 7.2 °C) and three durations (1, 3, and 5 days) on the severity of chilling injury were compared for three cultivars known to differ in their sensitivity to low temperatures. Exposure of detached mature leaves to 7.2 °C for 3 days allowed differentiation of cultivars' chilling sensitivity. Chilling injury appeared as dark necrotic patches at or near leaf tips and along margins, as early as 1 day after chilling. Chilling injury became more widespread over a 13-day period, and the best window for evaluating cultivar differences was 9 to 13 days after chilling. Significant differences in chilling sensitivity existed among 16 cultivars. Three cultivars, `Florida Red Ruffles', `Marie Moir', and `Miss Muffet', were resistant to chilling injury. These cultivars could serve as parents for caladium cold-tolerance breeding, and this breeding effort could result in reduced chilling injury in greenhouse production of potted plants, or in new cultivars for regions where chilling occurs during the growing season.

Free access

Zhanao Deng and Brent K. Harbaugh

The ornamental value of caladium (Caladium ×hortulanum Birdsey) depends primarily on leaf characteristics, including leaf shape and main vein color. Caladium leaf shapes are closely associated with plant growth habit, stress tolerance, and tuber yield; leaf main vein colors are often used for cultivar identification. Thirty-eight crosses were made among 10 cultivars and two breeding lines; their progeny were analyzed to understand the inheritance of leaf shape and main vein color and to determine if there is a genetic linkage between these two traits. Results showed that a single locus with three alleles determined the main vein color in caladium. The locus was designated as V, with alleles V r, V w, and V g for red, white, and green main veins, respectively. The white vein allele was dominant over the green vein allele, but it was recessive to the red vein allele, which was dominant over both white and green vein alleles; thus the dominance order of the alleles is V r > V w > V g. Segregation data indicated that four major red-veined cultivars were heterozygous with the genotype Vr V g, and that one white-veined cultivar was homozygous and one other white-veined cultivar and one breeding line were heterozygous. The observed segregation data confirmed that the three leaf shapes in caladium were controlled by two co-dominant alleles at one locus, designated as F and f, for fancy and strap leaves, respectively. The skewedness of leaf shape segregation in some of the crosses implied the existence of other factors that might contribute to the formation of leaf shape. Contingency chi-square tests for independence revealed that caladium leaf shape and main vein color were inherited independently. The chi-square tests for goodness-of-fit indicated that the five observed segregation patterns for leaf shape and main vein color fit well to the expected ratio assuming that two co-dominant and three dominant/recessive alleles control leaf shape and main vein color and they are inherited independently.

Free access

Zhanao Deng and Natalia A. Peres

Caladiums (Caladium ×hortulanum Birdsey, Araceae Juss.) can be grown in containers or planted in the landscape as accent and border plants (Evans et al., 1992). They are valued for their long-lasting colorful foliage. Most of the commercially available caladium plants are forced from tubers. Florida growers supply essentially all the caladium tubers used in the United States and some 40 countries in the world for the production of pot plants and direct planting in the landscapes. New cultivar introductions are important not only to the Florida caladium industry but also to the greenhouse, nursery,

Free access

Sarah M. Smith and Zhanao Deng

The genus Coreopsis L. is Florida’s state wildflower; there is a strong interest in commercial production and large-scale planting of Coreopsis seed in Florida, especially the seed of Coreopsis leavenworthi Torr. & A. Gray (COLE) and Coreopsis tinctoria Nutt. (COTI). Both species belong to the same section [Calliopsis (Reichenb.) Nutt.] within Coreopsis and were known to be cross-compatible and produce interspecific hybrids when hand-pollinated or grown in close proximity. Little was known about the effects of such hybridization on progeny growth, development, and reproduction, which are very important to seed production and planting. F1 and F2 interspecific populations between COLE and COTI were created in the greenhouse and then evaluated in replicated field studies in two growing seasons. Results showed that interspecific hybridization between COLE (as the maternal parent) and COTI (as the paternal parent) significantly increased the plant height (by 11.4% to 18.7%), plant dry weight (by 38.6% to 63.9%), and time to flower (by 3.7 to 9.8 days) of the F1 and F2 progeny of COLE × COTI crosses. By contrast, interspecific hybridization between COTI (as the maternal parent) and COLE (as the paternal parent) did not cause significant changes in these characteristics of the F1 and F2 progeny of COTI × COLE crosses. The differences between the two species in responding to interspecific hybridization suggest that COTI played a more dominant role in controlling plant height, dry weight, and time to flower in its hybrids with COLE. Results pooled from all F1 or F2 progeny of reciprocal interspecific crosses showed that interspecific hybridization did not seem to affect the plant height and seedling emergence of F1 and F2 progeny but affected the dry weight, time to flower, pollen stainability, and seed production (per seed head) of these progeny. Heterosis was observed in the time to flower of F1 progeny in 2009. Heterosis was also evident in F1 progeny’s dry weight but followed with slight hybrid breakdown in F2 progeny. Pollen stainability and seed production both showed significant breakdown in F1 and F2 progeny: 53.3% to 81.1% reduction in pollen stainability and 12.6% to 38.2% reduction in seed production, respectively. Chromosome mispairing resulting from reported reciprocal translocations between the chromosomes of COLE and COTI might be the primary cause of low pollen stainability and seed production in F1 and F2 progeny. Maternal effects were detected in plant height and dry weight of F1 and F2 progeny. These results showed that interspecific hybridization between COLE and COTI would result in deleterious effects to both species; thus, it is very important to prevent cross-pollination and hybridization between them in commercial seed production and native plantings.