Search Results

You are looking at 11 - 20 of 77 items for

  • Author or Editor: William B. Miller x
  • Refine by Access: All x
Clear All Modify Search
Free access

Douglas A. Bailey and William B. Miller

Plants of Euphorbia pulcherrima Wind. `Glory' were grown under 13.4, 8.5, or 4.0 mol·m-2·day-1 and sprayed with water (control); 2500 mg·liter-1 daminozide + 1500 mg·liter-1 chlormequat chloride (D+C); 62.5 mg·liter-1 paclobutrazol; or 4, 8, 12 or 16 mg·liter-1 uniconazole to ascertain plant developmental and pest-production responses to the treatment combinations. Days to anthesis increased as irradiance was decreased. Anthesis was delayed by the D+C treatment, while other growth retardant (GR) treatments had no effect on anthesis. Irradiance did not affect plant height at anthesis, but all GR treatments decreased height over control plants. Bract display and bract canopy display diameters declined as irradiance was decreased. Growth retardants did not affect individual bract display diameters, but all GR treatments except paclobutrazol reduced bract canopy display diameter. Plants grown under lower irradiance had fewer axillary buds develop, fewer bract displays per plant, and fewer cyathia per bract display. Cyathia abscission during a 30 day post-anthesis evaluation was not affected by treatment; however, plant leaf drop was linearly proportional to irradiance. All GR treatments increased leaf drop over controls, and the D+C treated plants had the highest leaf loss. Results indicate the irradiance and GR treatments during production can affect poinsettia crop timing, plant quality at maturity, and subsequent post-production performance.

Free access

Susan E. Trusty and William B. Miller

Exudation of phloem sap into EDTA (ethylenediaminetetraacetic acid) solutions has been found to be a successful technique for qualitatively determining translocated assimilates in many plants. Mature Chysanthemum leaves were excised under a solution of 10 mM EDTA (pH 7.0). The petioles of these leaves were placed in EDTA, and leaf exudate was collected at intervals for 24 h. Soluble carbohydrates were determined with HPLC. While numerous sugars were present in the leaf, sucrose was the only sugar found in the EDTA solutions. The greatest rate of sucrose exudation occurred in the first two h after excision. Diurnal fluctuations of soluble sugars in Chrysanthemum leaves were also monitored in greenhouse-grown plants (late winter in Arizona). Sucrose exhibited a clear diurnal fluctuation, and nearly doubled in concentration (to appx. 25 mg/g DWT) in the afternoon relative to the low in the morning. Other leaf carbohydrates, including glucose, starch, and fructans showed diurnal variations as well.

Free access

Susan E. Trusty and William B. Miller

Exudation of phloem sap into EDTA (ethylenediaminetetraacetic acid) solutions has been found to be a successful technique for qualitatively determining translocated assimilates in many plants. Mature Chysanthemum leaves were excised under a solution of 10 mM EDTA (pH 7.0). The petioles of these leaves were placed in EDTA, and leaf exudate was collected at intervals for 24 h. Soluble carbohydrates were determined with HPLC. While numerous sugars were present in the leaf, sucrose was the only sugar found in the EDTA solutions. The greatest rate of sucrose exudation occurred in the first two h after excision. Diurnal fluctuations of soluble sugars in Chrysanthemum leaves were also monitored in greenhouse-grown plants (late winter in Arizona). Sucrose exhibited a clear diurnal fluctuation, and nearly doubled in concentration (to appx. 25 mg/g DWT) in the afternoon relative to the low in the morning. Other leaf carbohydrates, including glucose, starch, and fructans showed diurnal variations as well.

Free access

Hye-Ji Kim and William B. Miller

The effect of GA4+7 plus benzyladenine (BA) on postproduction quality was investigated in `Seadov' tulips (Tulipa gesneriana). Potted tulips at half-colored bud stage or full-bloom stage were sprayed with a range of GA4+7 plus BA, and placed in a simulated consumer environment (SCE) in order to determine effectiveness of the compound at each stage. Regardless of plant stage, treatment with GA4+7 plus BA effectively improved individual flower longevity and whole plant longevity in the range of concentrations tested. GA4+7 plus BA had a strong effect on enhancing flower longevity when sprayed to mature (fully colored) buds, and a lesser effect on immature (green) buds, and whole plant longevity increased with higher doses of GA4+7 plus BA. When applied to open flowers, however, concentrations over 50 mg·L–1 reduced individual flower and whole plant longevities relative to lower concentrations resulting from unwanted full-opening of older flowers and exaggerated gynoecium growth. Concentrations as low as 10 mg·L–1 significantly increased longevity of tulip flowers of all age classes. The effects of enhancing postproduction quality of `Seadov' pot tulips were primarily derived from the BA component of the compound.

Free access

Joseph P. Albano and William B. Miller

Excised roots of `First Lady' marigold (Tagetes erecta L.) grown in an aerated 0 Fe nutrient solution had Fe(III)-DTPA reductase activity 14-fold greater, and an enhanced ability to acidify the rhizosphere than plants grown in a solution containing 0.018 mm (1 ppm) Fe-DTPA. Reductase activity and rhizosphere acidification of plants grown in 0.018 and 0.09 mm Fe-DTPA were similar. Manganese concentration in leaves of plants grown in the 0 Fe treatment was 2-fold greater than in leaves of plants grown in the 0.018 mm Fe-DTPA treatment. These results indicated that `First Lady' marigold is an Fe-efficient plant that possesses both an inducible or adaptive reductase system and the ability to acidify the rhizosphere, and that these Fe-efficiency reactions do not occur when Fe is sufficient. Chemical name used: ferric diethylenetriaminepentaacetic acid, monosodium salt (Fe-DTPA).

Full access

Joseph P. Albano and William B. Miller

Irradiating a ferric ethylenediaminetetraacetic acid (FeEDTA)-containing commercially available soluble fertilizer with ultraviolet (UV) and blue radiation from high intensity discharge (HID) lamps caused the photooxidation of the FeEDTA complex, resulting in the loss of 98% of soluble iron. The loss of soluble iron coincided with the development of a precipitate that was mostly composed of iron. The effects of using an irradiated FeEDTA-containing fertilizer solution on plant growth and nutrition under commercial conditions were studied. Application of the irradiated fertilizer solutions to greenhouse grown tomato plants (Lycopersicon esculentum) resulted in lower levels of iron (6%) and zinc (9%), and higher levels of manganese (8%) and copper (25%) in leaf tissue compared to control plants that received a nonirradiated fertilizer solution. Leaf macronutrient levels (phosphorous, potassium, calcium, and magnesium), leaf dry weight, leaf number, and plant height was not affected by application of the irradiated fertilizer solution.

Free access

Joseph P. Albano and William B. Miller

Irradiation of FeDTPA-containing nutrient solutions by a fluorescent plus incandescent light source resulted in the loss of both Fe-chelate and soluble Fe, the formation of a precipitate that was composed mostly of Fe, and a rise in pH. The rate of Fe-chelate photodegradation in solution increased with irradiance intensity and with solution temperature under irradiation, but irradiance had the greater effect. Fe-chelates absorb in the blue and UV regions of the spectrum. Removal of these wavelengths with a spectral filter eliminated photodegradation. Chemical name used: ferric diethylenetriaminepentaacetic acid (FeDTPA).

Free access

Polyxeni M. Filios and William B. Miller

We conducted a series of studies to determine the efficacy of a sprayable formulation of 1-methylcyclopropene (1-MCP; AFxRD-038) to inhibit ethylene-mediated flower abscission in Impatiens walleriana. Exposing Impatiens plants to 1.0 μL·L−1 ethylene for 18 hours caused complete abscission of open flowers and most buds. Sprays of the novel 1-MCP formulation at concentrations >2.5 mg·L−1 protected plants from ethylene. At 5 and 10 mg·L−1, the efficacy of 1-MCP increased as spray volume increased from 102 mL·m−2 to 306 mL·m−2. 1-MCP was rainfast with no decrease in efficacy resulting from heavy overhead irrigation within 1–2 minutes of application. Prepared 1-MCP solutions (10 mg·L−1) remained effective up to 2 weeks after mixing if held in airtight containers. The sprayable 1-MCP formulation provided protection against exogenous ethylene for a maximum of 4 days and reduced stress-related abscission from 3 days of darkness (in the absence of exogenous ethylene) at 20 °C or 40 hours darkness at 28 °C.

Free access

Anil P. Ranwala and William B. Miller

Easter lily flower buds at five stages of development (stage 1, 3–4 cm in length; stage 2, 6–7 cm; stage 3, 9–10 cm; stage 4, unopened buds, 13–14 cm; and stage 5, open flower one day after anthesis) were harvested, and flower organs were dissected for carbohydrate analysis. Extracting soluble sugars in distilled water at 70°C gave the optimum yield of soluble sugars among the several extraction methods tested including 80% ethanol, and distilled water at various temperatures. Separation of the extracted soluble sugars by alkaline high performance anion exchange chromatography revealed the presence of glucose, fructose, sucrose, and two other sugars of unknown identity. Glucose and fructose concentrations increased remarkably during the flower development in sepal (about 15-fold), style (about 10-fold), and filament (about 5-fold), while sucrose levels remained constant at low concentrations. In stigma, sucrose levels increased parallel to the increase of hexose sugars during development. Ovary had high sucrose levels relative to hexoses that remained constant while hexoses increased gradually. In anther, hexose concentrations increased at the stage 2 and then dropped at stage 3 and 4. Sucrose levels were higher than hexoses in anther, and it increased from stage 1 to stage 2, then dropped at stage 3, and increased thereafter. In addition to these sugars, anthers at stages 2 and 3 had a series of late eluting oligosaccharides. These oligosaccharides could be hydrolyzed to glucose with hot 1 m H2SO4 or with amyloglucosidase.

Free access

Yao-Chien Chang and William B. Miller

Upper leaf necrosis (ULN) on Lilium `Star Gazer' has been recently demonstrated to be a calcium (Ca) deficiency disorder. In the current studies, we confirmed this by using a Ca-free nutrient regime to reproduce ULN symptoms. The ability of a bulbous storage organ to supply calcium to a growing shoot is poorly understood. Therefore, we conducted experiments to determine Ca partitioning during early growth stages, and under suboptimal Ca levels to determine how the bulb affects the symptomatology. The results indicated that ULN is originally caused by an insufficient Ca supply from the bulb. In the most susceptible period, bulb dry matter decreased dramatically and Ca concentrations in immature folded leaves dropped to very low levels. Consequently, necrosis began to appear on the upper, young leaves. The bulb was able to supply Ca to other organs, but only to a limited extent since Ca concentration in bulbs was low (0.04% w/w). To confirm this result, we cultivated lilies with low-Ca or Ca-free nutrient solution and obtained bulbs with extremely low internal Ca concentrations. Upon forcing these low-Ca bulbs, we found, as expected, prominent necrosis symptoms on the lower and middle leaves. Data suggested the lower and middle leaves relied more on Ca supplied from the bulb, while upper leaves and flowers relied more on Ca uptake from the roots. Different organs have different Ca requirements, and tissue sensitivity to Ca deficiency varies according to the growth stage.