Search Results

You are looking at 11 - 20 of 59 items for

  • Author or Editor: T.K. Hartz x
  • Refine by Access: All x
Clear All Modify Search
Free access

T. K. Hartz

A 1993 survey of 50 commercial processing tomato fields in California revealed widespread potassium deficiency, as determined by tissue K levels below existing sufficiency standards and the occurrence of vine necrosis consistent with K deficiency. Soils from these fields were analyzed for exchangeable K by ammonium acetate extraction, and for K release rate by a 7 day incubation procedure (1:10 soil:. 01 M CaCl2 at 25°). Soil K release rate was more highly correlated with tissue K at midseason than was exchangeable K. These soils were further examined for K fixation capacity. Three g soil was blended with 3 ml 10 meq K as KNO3, allowed to dry, incubated for 7 days in a 1:10 soil: H2O solution, then extracted in 1 N NH4Cl; added K not recovered was considered fixed. Percent K fixation ranged from 0 to 82%. These data suggest that the inconsistent response of processing tomato to K application in numerous California trials may be related to a) the reliance on extractable K analysis to characterize soil K supply and b) no consideration of soil K fixation capacity in determining K application timing and method.

Free access

T.K. Hartz and C. Giannini

Windrows of municipal yard and landscape waste at three commercial composting sites in California were sampled at ≈3-week intervals through 12 to 15 weeks of composting to observe changes in physiochemical and biological characteristics of importance to horticulture. Initial C, N, P, and K content averaged 30%, 1.3%, 0.20%, and 0.9%, respectively. Carbon concentration declined rapidly through the first 6 to 9 weeks, while N, P, and K remained relatively stable throughout the sampling period. Few viable weed seeds were found in any compost. A high level of phytotoxicity, as measured by a tomato (Lycopersicon esculentum Mill.) seed bioassay, was observed at only one site; overall, the degree of phytotoxicity declined with compost age. Short-term net N immobilization (in a 2-week aerobic incubation) was observed in nearly all samples, with an overall trend toward decreased immobilization with increased compost age. In a 16-week pot study in which fescue (Festuca arundinacea Shreb.) was grown in compost-amended soil, net N mineralization averaged only 2% to 3% of compost total N content. Neither composting site nor duration of composting significantly affected either N mineralization rate or fescue growth. Growth of vinca (Catharanthus roseus Don.) in a blend of 1 compost : 1 perlite increased with increasing compost age. Overall, at least 9 to 12 weeks of composting were required to minimize the undesirable characteristics of immature compost.

Free access

T.K. Hartz and J. Caprile

Sweet corn (Zea mays L.) cultivars carrying the sh2 mutation show poor seed vigor under stressful field conditions, requiring higher seeding rates to ensure stand establishment. The effects of sodium hypochlorite seed disinfestation, solid matrix priming (SMP), and seed-coating with Gliocladium virens Miller, Giddens & Foster to enhance emergence of sh2 sweet corn in controlled-environment cold stress tests and field trials were investigated. In combination with a chemical fungicide seed treatment (captan, thiram, imazalil, and metalaxyl), SMP significantly improved the percentage and rate of seedling emergence of `Excel' and `Supersweet Jubilee' in a cold stress test (in soil for 7 days at 10C, then 15C until emergence) but was inconsistent under field conditions, improving emergence in only one of four field trials. Sodium hypochlorite disinfestation was ineffective. Compared to a film-coated control, coating seeds with G. virens strain G-6 was highly effective in increasing emergence in two of three cultivars tested in cold stress tests in two soils, while strain G-4 was generally ineffective. In field trials, G-6 treatment significantly increased emergence over that of nontreated seed but was inferior to conventional fungicide treatment and conferred no additional benefit in combination with fungicide treatment. Overall, no seed treatment evaluated was an economically viable alternative for or supplement to chemical fungicide treatment. Chemical names used: cis-N-trichloromethylthio-4-cyclohexene-1,2-dicarboximide (captan); tetramethyl-thiuram disulfide (thiram); 1-[2-(2,4-dichlorophenyl)-2-(2-propenyloxy)ethyl]-1H-imidazole (imazalil); N-(2,6-dimethylphenyl)-N-(methoxyacetyl)-alanine methyl ester (metalaxyl).

Free access

T.K. Hartz and S. Breschini

High rates of N fertilization of cool-season vegetables has contributed to NO3-N pollution of groundwater in the Salinas Valley of central California. Ten field demonstrations were conducted in 1999 to document the utility of presidedress soil NO3-N testing in maximizing N fertilizer efficiency in iceberg lettuce (Lactuca sativa L.). In each demonstration, a plot 36 beds wide × the entire field length was established in a commercial lettuce field. The cooperating growers applied 1 to 3 N sidedressings in these fields. Before each sidedressing the soil NO3-N concentration in the top 30 cm of the plot was determined by an on-farm quick test technique. If NO3-N was >20 mg·kg-1, no N was applied at that sidedressing; for NO3-N <20 mg·kg-1, ≈4 kg N/ha was applied for each milligram per kilogram below the 20 mg·kg-1 threshold. Plot yields, harvested by commercial crews, were compared to the yield of adjacent areas of the field that received the growers' full sidedress N regime. Across fields, seasonal sidedress N application in the PSNT plots averaged N only at 86 kg·ha-1, almost 60% less than the average N (212 kg·ha-1) applied by the growers. Yields in the PSNT plots averaged 1824 boxes/ha, compared with 1829 boxes/ha in the companion field plots. Whole leaf N concentration at heading was above published sufficiency standards in all PSNT plots. Evaluation of heads after 10 days of storage at 5 °C showed that sidedress N application rate did not affect visual quality, decay, or midrib discoloration. We conclude that PSNT can reliably be used to minimize wasteful sidedress N applications in lettuce.

Free access

K.S. Mayberry and T.K. Hartz

Trials were conducted in California to evaluate techniques to extend storage life of netted muskmelons (Cucumis melo L.). The use of polyethylene bags, either as individual melon wraps or as liners for 18-kg commercial cartons, minimized water loss and associated deterioration of the fruit. Individual bags and carton liners were equally effective. A 3-minute dip in 60C water effectively checked surface mold development on wrapped fruits. Lower temperature and/or shorter exposure treatments were less effective. When applied in addition to hot water treatment, imazalil fungicide did not confer significant additional benefit. The combination of polyethylene bags and hot water treatment maintained high quality, marketable fruit for at least 28 days of storage at 3C,

Free access

S.J. Breschini and T.K. Hartz

Trials in nine commercial celery (Apium graveolens L.) fields were conducted between 1997-99 to evaluate grower drip irrigation management practices and their effects on yield and quality. Surface drip irrigation tapes with flow rates higher and lower than the grower-installed tapes were spliced into the field system; as the cooperating growers irrigated and applied N fertigation according to their routine practices these drip tapes delivered either more or less water and N than the field drip system. Total grower water application during the drip-irrigated portion of the season ranged from 85% to 414% of seasonal reference evapotranspiration (ETo). Water volume per irrigation varied among fields from 1.8 to 3.8 cm, with irrigation frequency varying from an average of every other day to once a week. Grower management of drip irrigation was not consistently successful in maintaining soil water tension (SWT) in a desirable range. SWT was often below -30 kPa, and in some cases below -70 kPa. These transient stresses were more often a result of inappropriate irrigation frequency than applied water volume. In four of the fields plots receiving less water than that delivered by the field system produced equivalent marketable yield and quality, indicating a significant potential for water savings. An economically important incidence of petiole pithiness (collapse of parenchyma tissue) was observed in four fields. Infrequent irrigation under high ETo summer conditions, rather than irrigation volume applied, appeared to be the major factor in pith development. N fertigation amount and crop N status appeared to be unrelated to pithiness severity. We conclude that celery drip irrigation management could be substantially improved by maintaining a closer proportionality between irrigation and crop evapotranspiration (ETc), increasing irrigation frequency, and reducing volume per irrigation.

Full access

T.K. Hartz and R.F. Smith

Research on controlled-release fertilizers (CRF) in vegetable production has been conducted in California for several decades, and commercial CRF products have been marketed throughout most of that time. CRF remain niche products used on only a small percentage of vegetable fields. The potential advantage of CRF is maximized in production systems in which in-season nitrogen (N) leaching is significant but beyond the control of the grower, and where there are cultural constraints on in-season fertilizer application. Neither of those conditions is typical of the California industry. Annual rainfall in the major vegetable-producing regions averages less than 400 mm, with the majority of that received during winter months when vegetable production is limited; in-season leaching occurs almost exclusively from irrigation. The alluvial soils favored for vegetable production tend to be relatively fine-textured, with high water holding capacity that reduces N leaching potential. The widespread adoption of drip irrigation allows for efficient irrigation and for multiple applications of less expensive N fertilizers in synchrony with crop demand. Under representative California field conditions it has been difficult to show a horticultural benefit from the use of CRF, and the higher cost of these products has therefore limited their use. Future government regulation for water quality protection may require more efficient N fertilization practices, but significant expansion of CRF use is unlikely even under that scenario.

Free access

P.R. Johnstone and T.K. Hartz*

Heavy P fertilization of vegetable crops in the Salinas Valley of California have increased soil P levels, with > 50 mg·kg-1 bicarbonate-extractable P (Pbc) now common. To evaluate the response of lettuce (Lactuca sativa L.) to P fertilization in fields with elevated soil P levels, 12 trials were conducted in commercial fields during 2002-2003. Pbc at the trial sites varied from 53-171 mg·kg-1. In each trial four replicate plots receiving the growers' P application were compared with paired plots in which no P was applied. Leaf P was monitored at cupping stage and at harvest. At harvest mean whole plant mass and % of marketable plants were recorded. The correlation of Pbc to bioavailable P (Pba) was evaluated using 30 representative Salinas Valley soils; Pbc varied among these soils from 15-177 mg·kg-1. Pba was estimated by P adsorption on an anion resin membrane during a 16 h incubation. The effect of temperature on P bioavailability in 6 of these soils was estimated by conducting the Pba incubation at 5, 15 and 25 °C. A significant increase in lettuce yield with P fertilization was achieved at only one trial site, a spring planting where Pbc was 54 mg kg-1 ; at all other sites, including 3 with Pbc < 60 mg kg-1, P application resulted in no agronomic benefit. P application resulted in only a marginal increase in plant P uptake. Pba was highly correlated with Pbc (r = 0.89). Pba increased approximately 40% across soils with each 10 °C increase in soil temperature.

Full access

T.K. Hartz and G.J. Hochmuth

Drip irrigation provides an efficient method of fertilizer delivery virtually free of cultural constraints that characterize other production systems. Achieving maximum fertigation efficiency requires knowledge of crop nutrient requirements, soil nutrient supply, fertilizer injection technology, irrigation scheduling, and crop and soil monitoring techniques. If properly managed, fertigation through drip irrigation lines can reduce overall fertilizer application rates and minimize adverse environmental impact of vegetable production.

Free access

P.R. Johnstone and T.K. Hartz*

Heavy P fertilization in the Salinas Valley of California has increased soil P concentration to levels of environmental concern. To determine the correlation of various soil test procedures with P pollution potential from agricultural land in this region, soil was collected from 30 fields, most in long-term vegetable rotations. Soils were analyzed for bicarbonate-extractable P (Pbc), calcium chloride-extractable P (Pcc), bio-available P (Pba, by an anion-resin membrane technique), and %P saturation (Psat, by an enrichment technique). The soils were then exposed to a simulated irrigation event, and soluble P concentration in runoff determined. In a separate experiment the effect of cover cropping on sediment and soluble P concentration in runoff was investigated; containers of six soils were planted with oats (Horteum vulgare L.), and then compared to containers of fallow soil. Pcc, Pba and Psat were all highly correlated (r = 0.86, 0.89 and 0.90, respectively) with Pbc, which ranged from 15-177 mg·kg-1. Soluble P concentration in runoff was highly correlated with all measures of P status (r = 0.98, 0.93, 0.85 and 0.83 for Pcc, Pba, Psat and Pbc, respectively). These results suggest that while Pbc, the standard agronomic measure of soil P status, is a useful indicator of P pollution potential, Pcc (a simple laboratory procedure that could be adapted as an on-farm `quick test' technique) may be superior for that purpose. Across soils, cover cropping reduced soluble P concentration in run-off by 41%, and sediment in the runoff by 85%.