Search Results

You are looking at 11 - 20 of 40 items for

  • Author or Editor: Steven A. Sargent x
  • Refine by Access: All x
Clear All Modify Search
Free access

Jiwon Jeong, Donald J. Huber, and Steven A. Sargent

1-Methylcyclopropene (1-MCP), an inhibitor of ethylene action, has been shown to extend the storage life of avocado fruit. Waxing is also known to extend the storage life of avocado by reducing water loss and modifying the fruit internal atmosphere. In this study, 1-MCP and waxing were used to investigate their effects on ripening characteristics in avocado fruit. Preclimacteric `Tower II' and `Booth 7' avocados were treated with 1-MCP (Ethylbloc®) for 12 h at 20 °C. Half of the fruit were waxed (Sta-Fresh 819F®, FMC Co.) after 1-MCP treatment. The fruit were subsequently stored at 13 °C or 20 °C at 85% RH. As evaluated by fruit firmness, ethylene evolution, and respiration rate, 1-MCP and waxing delayed the ripening of `Tower II' avocados stored at 20 °C. Fruit treated with both 1-MCP and wax had better retention of green peel color and fruit firmness, and the delayed climacteric pattern of ethylene evolution and respiration rates. Waxing reduced weight loss and retarded softening, but did not delay climacteric ethylene evolution and respiration rates. Whereas firmness of control fruit decreased from >100 N to 20 N in as few as 7 days at 20 °C, fruit treated with both 1-MCP and wax reached 20 N over 11 days at 20 °C. The firmness of `Booth 7' avocados treated with both 1-MCP and wax decreased from >170 N to 20 N over a 5-week period at 13 °C. Current studies are addressing the nature of the dramatic decrease in firmness of MCP-treated fruit.

Free access

Steven A. Sargent, Jeffrey K. Brecht, and Judith J. Zoellner

Internal bruising (IB) caused by handling impacts results in disruption of normal ripening in tomato (Lycopersicon esculentum Mill.) locular gel. It was selected as an injury indicator to investigate the effect of drop height (O, 10, 20, 30 cm) onto an unpadded surface and number of impacts (one or two) for three tomato cultivars. For mature-green (MG) tomatoes, significant incidence of IB (5% to 45%) was found in all cultivars for single drops on opposite sides of fruits from 20 cm; two drops on the same location from 20 cm caused 20% to 30% IB. Breaker-stage (BR) tomatoes were more sensitive to impacts than MG. Single drops from 10 cm on opposite sides of BR fruits caused 15% to 73% IB, depending on cultivar. Two drops on a single location from 10 cm caused 50% to 68% IB. `Sunny' was less susceptible to IB than `Solar Set' or `Cobia' (formerly NVH-4459).

Full access

Kathryn Gunderson, Steven A. Sargent, Daniel J. Cantliffe, Steven G. Jacob, and George J. Hochmuth

To remain competitive for federal and state funding, state cooperative extension services must proactively incorporate issues programming and performance-based budgeting. State major program (SMP) design teams, which provide linkages between clientele groups and the research base, must conduct needs assessments to adjust to this new atmosphere of accountability. A case study illustrates how one Florida SMP (FL107, vegetable production, harvest, handling and integrated pest management in Florida) restructured its design team to become more flexible and proactive to target a wider range of outcomes. While still in the implementation phase, this model has already resulted in improved communication within the organization, better addressing extension needs at county level while facilitating reporting at the state level.

Full access

Marcelo A.G. Carnelossi, Edinaldo O.A. Sena, Adrian D. Berry, and Steven A. Sargent

Blueberry is widely grown around the world, and the United States is the leading producer. A strategy to maintain fruit quality during commercial handling is rapid cooling using the forced-air system. Hydrocooling (HY) is an effective cooling method widely used for many crops and has potential as a cooling method for blueberry. The objective of this study was to compare the cooling efficiency of conventional forced-air cooling (FA), the current commercial method, with immersion HY alone or HY in combination with FA (HY + FA), and to determine effects on blueberry fruit quality during subsequent cold storage. ‘Emerald’ and ‘Farthing’ southern highbush blueberry were commercially harvested and packed into plastic clamshell containers. FA was accomplished by simulating commercial conditions using a small-scale unit within a cold room at 1 °C/80% relative humidity (RH) until 7/8 cooling was achieved (27 minutes). For HY, fruit in clamshells (125 g) were immersed in chlorinated ice water (200 ppm free Cl−1, pH = 7.0) and 7/8 cooling occurred in 4 minutes. For HY + FA, fruit were 7/8 hydrocooled then transferred to FA for 30 minutes to remove free water from the fruit. After the cooling treatments, clamshells were evaluated weekly for selected quality parameters during 21 days storage at 1 °C. For HY treatment, the 1/2 cooling time was 1.13 minutes for ‘Emerald’ and 1.19 minutes for ‘Farthing’, whereas for FA treatment, the 1/2 cooling times were 4.5 and 6.8 minutes, respectively. For ‘Farthing’, cooling method did not affect fruit firmness; after 21 days, there was a slight softening in fruit from all treatments. However, ‘Emerald’ fruit cooled by HY + FA were softer than those from either HY or FA after 14 days of storage. For all cooling methods ‘Emerald’ was less acidic (0.3% citric acid) and was sweeter [10.2% soluble solids content (SSC)] than ‘Farthing’ (0.6% citric acid, 9.4% SSC). There were no differences in bloom among cooling methods. Bloom ratings for ‘Emerald’ remained >4.5 (70% to 80% coverage) whereas that for ‘Farthing’ cooled by HY or HY + FA was 3.7. Anthocyanin concentration in ‘Emerald’ fruit from HY + FA cooling method decreased by 33% during 21 days of storage, whereas that for ‘Farthing’ remained constant (8.3 mg cyanidin-3-Glicoside/g) irrespective of treatment during storage. Compared with ‘Farthing’, ‘Emerald’ was more sensitive to HY, where ≈15% of fruit developed visual skin breaks (split) after 7 days storage. HY shows potential as an alternative method to rapidly and thoroughly cool southern highbush blueberries such as ‘Farthing’, thus, maintaining fruit quality, while introducing a rinsing and sanitizing treatment. HY needs to be tested on commercial cultivars to determine the incidence of fruit splitting.

Free access

Nicole L. Shaw, George J. Hochmuth, Steven A. Sargent, and Ed A. Hanlon

`Camelot' bell pepper was grown in a N fertigation study on sandy soil using polyethylene-mulched and fumigated beds. Portions of N (0%, 33%, 67%, 100% of total season N) were applied at bed formation. The remaining N was injected weekly into the drip irrigation system. Total N application treatments were 64, 128, 192, and 256 kg·ha–1. Early and total-season marketable fruit yields increased linearly with N rate. Preplant fertilizer proportion did not influence early yields, but late and total-season marketable fruit yields decreased linearly as preplant fertilizer proportion increased. Petiole sap NO3-N concentration increased with increasing N rates, but decreased linearly as preplant fertilizer proportion increased. Petiole sap NO3-N concentrations fell below critical levels for all N rates and preplant fertilizer proportions early in the season. Whole-leaf N concentrations were higher than critical values (>40 g·kg–1) throughout the season. Preplant fertilizer proportion had a significant linear effect on whole-leaf N concentrations for all sampling periods. Petiole sap was better correlated to yield data than whole-leaf N.

Free access

Mildred N. Makani, Steven A. Sargent, Lincoln Zotarelli, Donald J. Huber, and Charles A. Sims

Early-maturing potato cultivars (Solanum tuberosum L.) grown in many subtropical and tropical regions are typically packed and shipped without curing. The objective of this study was to evaluate two early-maturing potato cultivars (‘Fabula’ and ‘Red LaSoda’) grown under four nitrogen fertilizer (NF) rates and harvested at three intervals after vine kill for effects on tuber physical and compositional quality at harvest and during storage. NF was applied through fertigation (0, 112, 224, or 336 kg·ha−1) and compared with granular NF application (224 kg·ha−1). The tubers were harvested weekly after vine kill (H1, H2, and H3) then evaluated for quality at 7 and 14 days during storage at 10 °C/80% to 85% relative humidity (RH). ‘Fabula’ tubers from H1 had the highest cumulative weight loss (3.6%) after 14 days of storage (season 1), while those from both H1 and H2 were highest (4.4%) in season 2, regardless of NF application method or rate. Tuber firmness increased by 1.5 newtons (N) for tubers from H1 after 7 days storage, and again by 0.76 N after 14 days for tubers from H2 and H3. Periderm dry matter content (DMC) for H1 tubers increased to 13.9% after 7 days, regardless of fertilizer treatment, in contrast to those from H2 or H3 where DMC remained constant throughout storage (10.6% and 11.4%, respectively). For ‘Red LaSoda’, cumulative weight loss in season 1 for H1 tubers was 2.2% after 14 days storage, whereas that for H2 and H3 tubers averaged 0.7%; this trend was similar for season 2. Periderm DMC significantly increased with increased storage time; that for H2 tubers was highest (19.6%) after 14 days. In both cultivars, tuber ascorbic acid content (AAC), soluble solids content (SSC), and total titratable acidity (TTA) remained constant throughout the 14-day storage period. Periderm maturity of ‘Fabula’ and ‘Red LaSoda’ potatoes had a greater effect on tuber physical and compositional quality during storage than the fertilizer rates or application methods. Fertigation at NF rates of 112, 224 or 336 kg·ha−1 was comparable with conventional granular NF application for growing high-quality tubers with acceptable postharvest life. Growing tubers at 112 kg·ha−1 nitrogen via fertigation has the potential to reduce both irrigation water usage and fertilizer runoff during the production cycle.

Free access

Celso L. Moretti, Elizabeth A. Baldwin, Steven A. Sargent, and Donald J. Huber

Tomato (Lycopersicon esculentum Mill.) fruit, cv. Solar Set, were harvested at the mature-green stage and treated with 50 μL·L-1 ethylene at 20 °C. Individual fruits at the breaker stage (<10% red color) were dropped onto a solid surface to induce internal bruising. Dropped and undropped fruit were stored at 20 °C until red-ripe, at which time pericarp, placental, and locule tissues were excised. Tissues from dropped tomatoes were examined for evidence of internal bruising and all tissues were analyzed for selected volatile profiles via headspace analysis. Individual volatile profiles of the three tissues in bruised fruit were significantly different from those of corresponding tissues in undropped, control fruit, notably: trans-2-hexenal from pericarp tissue; 1-penten-3-one, cis-3-hexenal, 6-methyl-5-hepten-2-one, cis-3-hexenol and 2-isobutylthiazole from locule tissue; and 1-penten-3-one and β-ionone from placental tissue. Alteration of volatile profiles was most pronounced in the locule tissue, which was more sensitive to internal bruising than the other tissues. Changes observed in the volatile profiles appear to be related to disruption of cellular structures.

Free access

Celso L. Moretti, Steven A. Sargent, Donald J. Huber, and Rolf Puschmann

Tomato (Lycopersicon esculentum L.) fruits, cv. Solarset, were harvested at the mature-green stage and treated with 50 μL/L ethylene at 20C. Breaker fruits (<10% red coloration) were dropped from 40 cm onto a smooth, solid surface and held along with undropped fruits at 20°C and 85% relative humidity. At table-ripe stage, pericarp, placental, and locular tissue were individually excised and analyzed for total carotenoids, total soluble sugars, soluble solids content, titratable acidity, density (locule tissue), polygalacturonase activity, and electrolyte efflux (pericarp tissue). Internal bruising caused by impact forces significantly affected pericarp and locule tissues, but not placental tissue. For bruised locule tissue, total carotenoids content decreased by 37.1%, vitamin C content by 15.6%, and titratable acidity by 15.3% as compared to control. However, density was increased by 3.0%. For bruised pericarp tissue, vitamin C content decreased by 16.5%, while polygalacturonase activity and electrolyte efflux increased by 33.3% and 24.8%, respectively. The development of abnormal ripening following an impact was confined to locule and pericarp tissues and appears to be related to the disruption of cellular structure and stimulation of enzymic activity.

Free access

Jiwon Jeong, Jeffrey K. Brecht, Donald J. Huber, and Steven A. Sargent

A study was conducted to determine the effect of 1-methylcyclopropene (1-MCP) on textural changes in fresh-cut tomato (Lycopersicon esculentum, Mill.) slices during storage at 5 °C. The relationship between fruit developmental stage and tissue watersoaking development was also determined. Fresh-cut tomato slices prepared from light-red fruit that had been exposed to 1-MCP (1 μL·L-1 for 24 h at 5 °C) retained significantly higher pericarp firmness during storage at 5 °C for 10 d than slices from nontreated fruit or slices stored at 10 or 15 °C and they also had a significantly higher ethylene production maximum. 1-MCP (1 or 10 μL·L-1 for 24 h at 5 °C) had no affect on the firmness of fresh-cut, red tomato slices at 5 °C or on slices prepared from 5 °C-stored, intact red tomatoes. Nor did 1-MCP treatment have a significant effect on electrolyte leakage of tomato slices or intact fruit stored at 5 °C. Slices from fruit of the same developmental stage but with higher initial firmness values had less watersoaking development and responded better to 1-MCP treatment during 8 d storage at 5 °C. 1-MCP (1 μL·L-1) was more effective in reducing watersoaking in light red stage tomato slices when applied at 5 °C for 24 h compared with 1-MCP applied at 10 or 15 °C. Watersoaking development was also more rapid in fresh-cut tomato slices as initial fruit ripeness advanced from breaker to red stage. Our results suggest that watersoaking development in fresh-cut tomato slices is an ethylene-mediated symptom of senescence and not a symptom of chilling injury as had previously been proposed.

Free access

Marcos D. Ferreira, Steven A. Sargent, Jeffrey K. Brecht, and Craig K. Chandler

Strawberry (Fragaria ×ananassa Duch.) fruit are very susceptible to mechanical injury and for this reason are normally field-packed. Fruit of three cultivars (Chandler, Oso Grande, Sweet Charlie) were subjected to forced-air or hydrocooling to reach pulp temperatures between 1 and 30 °C and then individually subjected to compression and impact forces representative of commercial handling operations. Strawberries with a pulp temperature of 24 °C exhibited sensitivity to compression but greater resistance to impacts. As pulp temperature decreased, fruit were less susceptible to compression as shown by up to 60% reduction in bruise volume. In contrast, strawberries at 1 °C pulp temperature had more severe impact bruising with up to 93% larger bruise volume than at 24 °C depending on the cultivar. Strawberries also showed different impact bruise susceptibility depending on the cooling method. Impacted fruit that were forced-air cooled had larger bruise volumes than those that were hydrocooled. The impact bruise volume for strawberries forced-air cooled to 1 °C was 29% larger than for fruit hydrocooled to 20 °C, 84% higher than those forced-air cooled to 20 °C, and 164% higher than those hydrocooled to 1 °C. Because incidence and severity of impact and compression bruises are temperature-dependent, strawberry growers should consider pulp temperature for harvest scheduling and for potential grading on a packing line. Hydrocooling shows promise to rapidly cool strawberry fruit while reducing weight loss and bruising sensitivity.