Search Results

You are looking at 11 - 20 of 34 items for

  • Author or Editor: Ryan N. Contreras x
  • Refine by Access: All x
Clear All Modify Search
Free access

Jason D. Lattier and Ryan N. Contreras

Lilacs (Syringa sp.) are a group of ornamental trees and shrubs in the Oleaceae composed of 22–30 species from two centers of diversity: the highlands of East Asia and the Balkan-Carpathian region of Europe. There are six series within the genus Syringa: Pubescentes, Villosae, Ligustrae, Ligustrina, Pinnatifoliae, and Syringa. Intraspecific and interspecific hybridization are proven methods for cultivar development. However, reports of interseries hybridization are rare and limited to crosses among taxa in series Syringa and Pinnatifoliae. Although hundreds of lilac cultivars have been introduced, fertility and cross-compatibility have yet to be formally investigated. Over 3 years, a cross-compatibility study was performed using cultivars and species of shrub-form lilacs in series Syringa, Pubescentes, and Villosae. A total of 114 combinations were performed at an average of 243 ± 27 flowers pollinated per combination. For each combination, we recorded the number of inflorescences and flowers pollinated as well as number of capsules, seed, seedlings germinated, and albino seedlings. Fruit and seed were produced from interseries crosses, but no seedlings were recovered. A total of 2177 viable seedlings were recovered from interspecific and intraspecific combinations in series Syringa, Pubescentes, and Villosae. Albino progeny were produced only from crosses with Syringa pubescens ssp. patula ‘Miss Kim’. In vitro germination was attempted on 161 seed from interseries crosses, resulting in three germinations from S. pubescens Bloomerang® x Syringa vulgaris ‘Ludwig Spaeth’. None survived, yet cotyledons produced callus for future efforts to induce embryogenic shoots. This study is a comprehensive investigation of lilac hybridization, and the knowledge gained will aid future efforts in lilac cultivar development.

Open access

Jason D. Lattier and Ryan N. Contreras

Althea (Hibiscus syriacus) is an ornamental shrub prized for its winterhardiness, flower colors, and unique flower forms, including single-flowered and double-flowered types. Although floral traits are most important for breeders of althea, little is known about their segregation patterns. The objective of this study was to determine segregation patterns in flower color, including eyespot, among hybrid seedlings of elite taxa. Over 4 years, more than 3100 flowering seedlings were produced for observation of F1, F2, and backcross families. For each plant, data were collected including presence of eyespot and petal body color (CIEL*a*b*) using a colorimeter. Recessive testcrosses and χ2 analyses were performed among three taxa (‘Buddha Belly’, ‘Diana’, and White Chiffon®), and between this recessive group and a suite of colorful taxa. Self-pollination and intercrosses within homozygous dominant and homozygous recessive groups further confirmed their genotypes. Based on these results, we propose that eyespot is controlled by a single gene called spotless, named for the recessive allele that results in a complete elimination of color in flowers. Crosses that resulted in seedlings that all produced eyespots were observed to segregate for color in the petal body. Of these, one group produced white to blush pink petals, which was recessive to full color. Recessive testcrosses and χ2 analyses were performed among nine taxa exhibiting eyespots with white to blush petal bodies, and between taxa with full-color petal bodies. These testcrosses resulted in a putative homozygous dominant group composed mostly of blue and dark pink taxa, whereas the heterozygous group was composed mostly of pink taxa. Spotless taxa were also added to these two groups, suggesting an epistatic interaction with the spotless allele. Based on these results, we propose that petal body color is controlled by a single gene called geisha, named for the recessive allele that produces white to blush-pink petal bodies and dark red eyespot. This trait exhibits incomplete dominance and is under epistatic control by spotless. Geisha-type flowers lack pigment in the petal body, or exhibit a blush pink, likely produced by low levels of cyanidin, peonidin, and pelargonidin. The interaction and segregation of these two genes was confirmed in F1, F2, and backcross families from two crosses: Lil’ Kim™ × Blue Chiffon™ and Fiji™ × White Chiffon®. This study on segregation of flower color in H. syriacus contributes substantial and useful information on inheritance of color and will facilitate targeted breeding to improve this vibrant ornamental shrub.

Free access

Jason D. Lattier and Ryan N. Contreras

Genome size variation can be used to investigate biodiversity, genome evolution, and taxonomic relationships among related taxa. Plant breeders use genome size variation to identify parents useful for breeding sterile or improved ornamentals. Lilacs (Syringa) are deciduous trees and shrubs valued for their fragrant spring and summer flowers. The genus is divided into six series: Syringa (Vulgares), Pinnatifoliae, Ligustrae, Ligustrina, Pubescentes, and Villosae. Reports conflict on genome evolution, base chromosome number, and polyploidy in lilac. The purpose of this study was to investigate genome size and ploidy variation across a diverse collection. Flow cytometry was used to estimate monoploid (1Cx) and holoploid (2C) genome sizes in series, species, cultivars, and seedlings from parents with three ploidy combinations: 2x x 2x, 2x x 3x, and 3x x 2x. Pollen diameter was measured to investigate the frequency of unreduced gametes in diploid and triploid Syringa vulgaris cultivars. Three triploids of S. vulgaris were observed: ‘Aucubaefolia’, ‘Agincourt Beauty’, and ‘President Grévy’. Across taxa, significant variations in 1Cx genome size were discovered. The smallest and largest values were found in the interspecific hybrids S. ×laciniata (1.32 ± 0.04 pg) and S. ×hyacinthiflora ‘Old Glory’ (1.78 ± 0.05), both of which are in series Syringa. Series Syringa (1.68 ± 0.02 pg) had a significantly larger 1Cx genome size than the other series. No significant differences were found within series Pubescentes (1.47 ± 0.01 pg), Villosae (1.55 ± 0.02 pg), Ligustrina (1.49 ± 0.05 pg), and Pinnatifoliae (1.52 ± 0.02 pg). For S. vulgaris crosses, no significant variation in 2C genome size was discovered in 2x x 2x crosses. Interploid crosses between ‘Blue Skies’ (2x) and ‘President Grévy’ (3x) produced an aneuploid population with variable 2C genome sizes ranging from 3.41 ± 0.03 to 4.35 ± 0.03 pg. Only one viable seedling was recovered from a cross combination between ‘President Grévy’ (3x) and ‘Sensation’ (2x). This seedling had a larger 2C genome size (5.65 ± 0.02 pg) than either parent and the largest 2C genome size currently reported in lilac. ‘Sensation’ produced 8.5% unreduced pollen, which we inferred was responsible for the increased genome size. No unreduced pollen was discovered in the other diploids examined. Increased ploidy may provide a mechanism for recovering progeny from incompatible taxa in lilac breeding.

Free access

Ryan N. Contreras, John M. Ruter, and Brian M. Schwartz

Japanese-cedar [Cryptomeria japonica (L.f.) D. Don] represents an alternative to leyland cypress [×Cuprocyparis leylandii (A.B. Jacks. & Dallim.) Farjon] as an evergreen screen or specimen plant for landscapes. It performs well under a range of soil and environmental conditions but has been underused attributable, in part, to unsightly winter browning caused by photoinhibition. In previous studies, chance seedlings that did not exhibit winter browning were identified as tetraploids. The current study was conducted to induce polyploidy in japanese-cedar. Approximately 600 seedlings were sprayed with 150 μM oryzalin + 0.1% SilEnergy™ for 30 consecutive days under laboratory conditions. Two hundred thirty-seven seedlings with thickened and twisted leaves were selected, transplanted, and grown in a glasshouse for 120 days. Seedling ploidy levels were analyzed using flow cytometry 180 days after treatment (DAT), identifying 197 (83.1%) tetraploids, 22 (9.3%) cytochimeras, and 18 (7.6%) diploids. Morphology of induced tetraploids was similar to that previously described and provided a phenotypic marker during selection that was over 92% accurate. A random subset of 20 tetraploid individuals was analyzed 270 DAT and were found to contain only tetraploid cells in the leaves analyzed, confirming stability over this period. This study demonstrated the use of oryzalin for inducing tetraploids in japanese-cedar, which we predict will be effective in other gymnosperms.

Free access

Ryan N. Contreras, Thomas G. Ranney, and Shyamalrau P. Tallury

Wide hybridization can lead to recombination of diverse traits and creation of unique phenotypes, but the resultant hybrids are often sterile as is the case with the intersubgeneric hybrid Rhododendron L. ‘Fragrant Affinity’. Sterility in wide hybrids can either be genic or chromosomal; the latter may be overcome by induction of polyploidy, which can restore chromosome homology and fertility. Cytologic studies of ‘Fragrant Affinity’ appear to support the presence of bridges between bivalents in metaphase I and laggard chromosomes in anaphase I. In the current study, an allotetraploid form of R. ‘Fragrant Affinity’ was developed using oryzalin (4-(dipropylamino)-3, 5-dinitro-benzenesulfonamide) as a mitotic inhibitor and chromosomal doubling agent. Genome sizes (2C) were determined using flow cytometry and found to be ≈1.6 and 3.2 pg for the diploid and allotetraploid, respectively. Pollen viability, determined by staining and germination tests, was 4% and 0%, respectively, for the diploid and 68% and 45%, respectively, for the allotetraploid. No seeds were produced when the diploid R. ‘Fragrant Affinity’ was used as a pistillate parent when pollinated with pollen from viable diploid and tetraploid parents. The allotetraploid produced viable seeds and seedlings when pollinated with pollen from either diploid or tetraploid parents, including self-pollination, demonstrating restored male and female fertility.

Full access

Ryan N. Contreras, Jonathan J. Velez, and Rob Golembiewski

New technologies such as online databases, interactive dichotomous keys, and online courses have changed the way some plant identification courses are delivered. These changing resources may create discrepancies between traditional instruction of landscape plant materials courses and the way modern students learn, which may result in students not meeting their potential. However, what resources students are using to study plant materials is unclear. We investigated the relationship between learning styles, study habits, and performance of students during two terms of woody landscape plant materials courses. To assess these relationships, we determined the characteristics of the participants and their preferred study method throughout the duration of the term as well as correlations between 1) preferred learning styles and performance, 2) preferred learning styles and preferred study method, and 3) performance and preferred study method. The participants in this study (n = 31) consisted of 14 males and 17 females. Of the 31 participants, 3 were freshmen, 3 were sophomores, 16 were juniors, 7 were seniors, and 2 were graduate students. Based on preference scores for learning style, 15 students were identified as visual learners, 3 as auditory, and 13 as kinesthetic learners. No significant relationships were observed between preferred learning style and performance or between preferred learning style and preferred study method. The two preferred study methods were using branch samples collected by the instructor and notecards created by students. No relationship existed between preferred study method and performance in the course. Our study provides information on study methods of woody plant identification students enrolled in a site-based course. We did not observe statistically significant relationships among preferred learning style, preferred study method, and course grade, but anecdotal evidence indicated students who prepared their own study aids by making notecards scored better in these courses.

Full access

Ryan N. Contreras, Jim Owen, Wayne Hanna, and Brian Schwartz

Ornamental grasses such as fountaingrass or napiergrass, collectively called pennisetums, belong to the genus Pennisetum, which is a diverse genus with over 80 species adapted to a wide range of climatic regions and known for its drought tolerance. Breeding efforts have led to improvements such as more intense purple foliage color, disease resistance, and apparent sterility. These improved forms have been developed and tested in the eastern United States. The objective of this research was to evaluate container and field performance of seven new complex hybrid pennisetums in the Pacific northwestern United States. Two completely randomized experiments with three replications were conducted over 2 years (2010 and 2011) at two locations. We selected seven trispecific hybrid pennisetums resulting from interploid and interspecific crossing that were given accessions Tift 5, Tift 6, Tift 10, Tift 11, Tift, 13, Tift 15, and Tift 26. Experiment 1 evaluated container performance in Corvallis, OR, while Expt. 2 evaluated field performance in Aurora, OR. Size index (SI), growth form rating, and color rating were collected and analyzed separately by location. In the container study, significant differences were observed among selections for growth form in 2010 and color ratings in both 2010 and 2011. In 2010, Tift 6, Tift 11, Tift 13, and Tift 15 had the highest growth form rating. For color rating, Tift 5, Tift 10, and Tift 26 were among the four highest rated selections in both years. In the field study, Tift 5, Tift 10, Tift 11, and Tift 26 had the highest SI when data were pooled over the 2 years, but all selections reached acceptable size for landscape use during both years of the study. Similarly, there were color differences among selections with Tift 5, Tift 10, Tift 15, and Tift 26 being highest rated. None of the selections survived below winter temperatures of −5 °C at either location during either year of the study. Our evaluations indicate that these selections have potential in the Pacific northwestern United States as annuals. Differences in complex hybrid pennisetums were observed in SI, growth form rating, and color rating. These differences demonstrated the variation among selections and will allow producers to choose desired traits based on market preference.

Free access

Justin A. Schulze, Jason D. Lattier, and Ryan N. Contreras

A tissue culture protocol was developed to germinate immature Prunus lusitanica seeds in vitro. The study was conducted by first identifying the best media for germination, followed by investigating effects of seed conditioning. In Expt. I, seeds were collected 12 weeks after pollination (WAP) ± 1 week and placed on media after removing the pericarp. Eight different MS media (Murashige and Skoog, 1962) were tested (M1–M8) containing two concentrations each of 6-benzylaminopurine (BA), gibberellic acid (GA3), and sucrose. The longest shoots resulted from M4 (1.45 µm GA3, 6 µm BA, and 30 g·L−1 sucrose), followed by M1 (0 µm GA3, 3 µm BA, and 30 g·L−1 sucrose). Radicle and shoot emergence was greater than or equal to 90% for M1, M3, and M4 after a stratification treatment. In Expt. II, M1 was used to test root and shoot emergence at 6, 9, and 12 WAP, with and without cold stratification. Little success was seen 6 and 9 WAP, with only callus development in 6 WAP, nonstratified seed. Cold stratification increased shoot emergence in the 12 WAP group from 4% to 28%, appearing to be critical for shoot emergence. If the cotyledons are retained on the seed, future efforts to expedite breeding of P. lusitanica using in vitro germination should not be collected before 12 WAP and will benefit from cold stratification before germinating on M1 or M4. Chemical names: 6-benzylaminopurine (BA), gibberellic acid (GA3).

Free access

Jason D. Lattier, Hsuan Chen, and Ryan N. Contreras

Chromosome numbers are an important botanical character for multiple fields of plant sciences, from plant breeding and genetics to systematics and taxonomy. Accurate chromosome counts in root tips of woody plants are often limited by their small, friable roots with numerous, small chromosomes. Current hydrolysis and enzyme digestion techniques require handling of roots before the root squash. However, optimum chromosome spread occurs when the cell walls have degraded past the point of easy handling. Here, we present a new enzyme digestion protocol that is fast, efficient, and flexible. This protocol reduces handling of the roots allowing for long-duration enzyme digestion. Digestions are performed on a microscope slide, eliminating the need for handling digested cells with forceps or pipettes. To illustrate the flexibility of this method across woody plant taxa, we performed chromosome counts on five angiosperms and one gymnosperm. Ploidy levels included diploids, triploids, and tetraploids with chromosome numbers ranging from 2n = 16 to 2n = 80. The range of holoploid 2C genome sizes spanned 1.54–24.71 pg. This protocol will provide a useful technique for plant cytologists working with taxa that exhibit a wide range of genome size and ploidy levels.

Free access

Ryan N. Contreras, John M. Ruter, and David A. Knauft

American beautyberry (Callicarpa americana) is a deciduous shrub native to the southeast United States and is grown primarily for its metallic-purple fruit that develop in the fall. There are also pink- and white-fruiting and variegated forms but these traits are rare in nature and there is no information available regarding their inheritance. Also, there is confusion regarding self-compatibility and the presence of apomixis in Callicarpa L. Crosses were performed to investigate the genetics of fruit color, self-compatibility, and apomixis in american beautyberry. Test crosses between C. americana (CA) and C. americana ‘Lactea’ (CAL) suggested that white fruit is recessive to purple. White fruit appears to be controlled by a single recessive gene for which we propose the name white fruit and the gene symbol wft. Although there were only a limited number of progeny grown, crosses between CA and ‘Welch’s Pink’ suggest that purple is dominant to pink. Test crosses between CAL and ‘Welch’s Pink’ are needed to draw conclusions; however, we propose that purple, pink, and white fruit are controlled by an allelic series for which we suggest the gene symbols Wft > wft p > wft. Segregation ratios suggested that all progeny in the study developed through sexual hybridization. All genotypes used in the current study were self-compatible.