Search Results

You are looking at 11 - 18 of 18 items for

  • Author or Editor: Ricardo Goenaga x
  • Refine by Access: All x
Clear All Modify Search
Free access

Ricardo Goenaga, Mark Guiltinan, Siela Maximova, Ed Seguine, and Heber Irizarry

Twelve cacao (Theobroma cacao) clones propagated by grafting and orthotropic rooted cuttings of somatic embryo-derived plants were grown on an Ultisol soil at Corozal, Puerto Rico, and evaluated for 6 years of production under intensive management. Year, variety, year × variety, and propagation treatment × variety interactions indicated significant effects for dry bean yield, number of pods produced, pod index, plant height, and stem diameter. Propagation treatments had a significant effect on dry bean yield and pod index but not on number of pods produced. Average yield across varieties for both propagation treatments was 2087.9 kg·ha−1 per year of dry beans. There was a highly significant variety effect. ‘UF-668’ was the top yielder averaging 2536.7 kg·ha−1 per year of dry beans; however, this yield was not significantly different from the average yield of varieties ‘TARS-30’, ‘TARS-1’, ‘TARS-13’, ‘TARS-14’, and ‘TARS-2’, which averaged 2427.0 kg·ha−1 per year. Except for ‘UF-668’, the TARS varieties were released in 2009 as high-yielding selections. Propagation treatments had a significant effect on dry bean yield. Dry bean yield of varieties propagated by grafting was 7% higher (2166.7 kg·ha−1 per year) than those propagated by orthotropic rooted cuttings of somatic embryo-derived plants (2009.2 kg·ha−1 per year). This yield difference could not be attributed to grafted plants being more vigorous nor by differences in root architecture. The lowest pod index value in both propagation treatments was obtained by ‘UF-668’; however, pod index for this variety did not differ significantly from values for ‘TARS-2’ and ‘TARS-23’ in grafted plants and from ‘TARS-2’, ‘TARS-23’, and ‘TARS-1’ in plants propagated by orthotropic rooted cuttings of somatic embryo-derived plants. With few exceptions, flavor characteristics were not significantly affected by propagation treatments. Although there were significant differences between plant propagation treatments for some of the variables measured in this study, these were not of a magnitude that would preclude the use of somatic embryogenesis as a viable propagation system for cacao.

Free access

Ricardo Goenaga, A. Graves Gillaspie Jr, and Adolfo Quiles

Cowpea or Southernpea [Vigna unguiculata (L.) Walp.] is an important legume crop used as a feed for livestock, as a green vegetable, and for consumption of its dry beans, which provide 22% to 25% protein. The crop is very sensitive to alkaline soil conditions. When grown at soil pH of 7.5 or higher, cowpea develops severe leaf chlorosis caused by deficiencies of iron (Fe), zinc (Zn), and manganese (Mn) resulting in stunted plant growth and yield reduction. We evaluated in replicated field experiments at St. Croix, U.S. Virgin Islands, and Juana Díaz, Puerto Rico, 24 PIs and two commercial cultivars, some of which have shown some tolerance to alkaline soils in unreplicated, seed regeneration plots of the U.S. cowpea collection. Alkaline soil conditions at St. Croix were too severe resulting in average yield of genotypes at this location being significantly lower and 77% less than that at Juana Díaz. Nevertheless, some genotypes performed well at both locations. For example, PIs 222756, 214354, 163142, 582605, 582840, 255766, 582610, 582614, 582576, 582809, and 349674 yielded in the upper half of the group at both locations. Accession PI 163142 ranked third in grain yield production at both locations and outyielded the iron-chlorosis-resistant controls at St. Croix. These genotypes deserve further attention as potential sources of alkaline soil tolerance.

Open access

Ricardo Goenaga, Brian Irish, and Angel Marrero

Banana (Musa acuminata AAA) is the most exported fruit worldwide and represents a major source of revenue for Central American and South American countries as well as the Caribbean region, among others. Black leaf streak disease (BLSD) or black sigatoka, caused by Pseudocercospora fijiensis (formerly Mycosphaerella fijiensis), is responsible for significant losses to this crop due to the high susceptibility of the most economically important cultivars. BLSD does not immediately kill banana plants, but it causes severe leaf necrosis that results in reduced photosynthetic area, thereby adversely impacting bunch weight and fruit production. Without cultural and chemical control, yields can be reduced by 20% to 80%, depending on severity. This study evaluated ‘FHIA-17’, a BLSD-resistant synthetic hybrid (AAAA), against ‘Grand Nain’, a standard commercial cultivar with no BLSD tolerance, at two locations in Puerto Rico on Ultisol (Corozal site) and Oxisol (Isabela site) soils where BLSD was not managed. Significantly lower bunch yield (45,990 kg·ha−1) and significantly fewer fruit (220,671 fruit/ha) were obtained at Corozal than at Isabela (53,755 kg·ha−1; 380,241 fruit/ha). Lower production at Corozal was the result of higher severity of BLSD at this location than at Isabela and to soil factors interfering with optimum nutrient uptake. Average fruit production of ‘FHIA-17’ was significantly higher than that of ‘Grand Nain’ at both locations, with bunch yields of 68,105 and 72, 634 kg·ha−1 at Corozal and Isabela, respectively. Fruit of the third-upper hand was significantly longer for ‘FHIA-17’ at Corozal but not different at Isabela; however, ‘FHIA-17’ fruit in this hand were of significantly greater diameter. Fruit in the last hand of ‘FHIA-17’ were significantly longer than in ‘Grand Nain’ at Corozal, but of significantly greater diameter at both locations. At both locations, the mean fruit weight was significantly higher in ‘FHIA-17’ than in ‘Grand Nain’. The number of functional leaves present at flowering and at harvest was significantly higher in ‘FHIA-17’ than in ‘Grand Nain’ at both locations, indicating more availability of photosynthetic area in ‘FHIA-17’ during the fruit-filling period. The harvest cycle of ‘FHIA-17’ was significantly longer than for ‘Grand Nain’. It took 315 and 204 more days in Corozal and Isabela, respectively, to harvest three cycles (mother crop and two ratoon crops) of ‘FHIA-17’ than for ‘Grand Nain’. No significant differences were found for starch and soluble sugars in green unripe or fully mature fruit among cultivars. In this long-term study, ‘FHIA-17’ showed to have good production and resistance against BLSD and is a viable alternative to current commercial cultivars. Its relative advantage of reduced production costs by not needing fungicide applications should be weighed against its longer harvest cycle to produce a fruit bunch.

Open access

Ricardo Goenaga, Brian Irish, and Angel Marrero

Plantain (Musa balbisiana AAB) is a tropical rhizomatous perennial plant in the genus Musa spp., closely related to banana (Musa acuminata AAA). It is an important cash crop and staple for inhabitants in many parts of the world, including various ethnic groups in the United States. Black leaf streak disease (BLSD) or black sigatoka, caused by Pseudocercospora fijiensis (formerly Mycosphaerella fijiensis), is responsible for significant losses of this crop due to the high susceptibility of the most economically important cultivars. BLSD does not immediately kill plantain plants, but it causes severe leaf necrosis, which results in reduced photosynthetic area, thereby adversely impacting bunch weight and fruit production. Without cultural and chemical control, yields can be reduced by 20% to 80%, depending on severity. This study evaluated a BLSD-resistant cultivar, FHIA-21, against Maricongo, a standard commercial cultivar with no BLSD tolerance, at two locations in Puerto Rico on Ultisol (Corozal site) and Oxisol (Isabela site) soils. Total number of fruit and bunch yield were significantly higher at Isabela, with BLSD severity being significantly lower at this location. Average fruit production of ‘FHIA-21’ was significantly higher than that of ‘Maricongo’ at both locations, with fruit yields of 122,522 and 99,948 fruit/ha at Isabela and Corozal, respectively. Overall, fruit of ‘FHIA-21’ were significantly longer and had greater diameters than those of ‘Maricongo’. At Isabela, the mean bunch fruit weight was significantly higher for ‘FHIA-21’, but both cultivars exceeded the minimum local marketable fruit weight criterion of 270 g. At both locations, the numbers of functional leaves present at flowering and at harvest were significantly higher for ‘FHIA-21’ than for ‘Maricongo’, indicating more availability of photosynthetic area for ‘FHIA-21’ during the fruit-filling period. There were no significant differences between cultivars regarding the concentration of starch and soluble sugars for green fruit. Regarding ripe fruit, ‘FHIA-21’ had a significantly higher concentration of soluble sugars and less starch. In this study, ‘FHIA-21’ had good resistance against BLSD and, if accepted by consumers, is a viable alternative to current commercial cultivars. We also conclude from this study that the expression of the Banana streak virus (BSV) in planting material of this cultivar remains an unknown threat in yield decline of ‘FHIA-21’.

Full access

Ricardo Goenaga, Heber Irizarry, David Jenkins, Debbie Boykin, and Angel Marrero

Research on sapodilla (Manilkara zapota) has been very limited. A field study was conducted to determine the yield potential, fruit quality traits, leaf nutrient composition, and scion/rootstock compatibility of ‘Prolific’ sapodilla grafted onto 16 sapodilla rootstock seedlings. For this purpose, seedlings (maternal half-sibs) of cultivars Adelaide, Arcilago, Aruz, Blackwood, Blocksberg, Guilbe, Hanna, Jamaica-1, Larsen, Mendigo-1, Gallera, Morning Star, Russel, Prolific, Timothe, and Vasallo-1 were used as rootstock seedlings and evaluated during 7 years of production at Isabela, PR. Year showed a significant effect on the number of fruit per hectare, yield, individual fruit weight, fruit length and diameter, and total soluble solids. Rootstock seedlings had a significant effect on the number of fruit per hectare, yield, and individual fruit weight but had no effect on other fruit traits. The year × rootstock interaction was not significant for any of the variables measured in the study. Rootstock seedlings ‘Timothe’, ‘Vasallo-1’, ‘Larsen’, and ‘Aruz’ had the highest 7-year mean for number and the yield of fruit averaging 4479 fruit/ha and 1245 kg·ha−1, respectively. ‘Timothe’ and ‘Vasallo-1’ significantly out yielded the ‘Prolific’ rootstock seedling. The number of fruit per hectare and corresponding yield obtained in this study were very low probably as the result of wind exposure, the presence of the fungus Pestalotia causing floral necrosis, or both. Scion/rootstock incompatibility was not the cause of the low yield performance of grafted trees. The average individual weight of fruit was 282 g and ranged from 264 to 303 g. Averaged over rootstock seedlings, leaf tissue nutrient concentration did not vary greatly over time. Moreover, tissue nutrient concentration was similar before and after fertilization events.

Open access

Ricardo Goenaga, Angel Marrero, and Delvis Pérez

Dragon fruit (Hylocereus sp. and Selenicereus sp.), also referred to as pitahaya or pitaya, is a member of the Cactaceae family and native to the tropical forest regions of southern Mexico, Central America, and northern South America. Its fruit is becoming increasingly popular as consumers seek healthy and more diverse food products. The crop adapts to different ecological conditions ranging from very dry regions to wet ones receiving more than 3500 mm of rainfall per year. U.S. commercial production of dragon fruit occurs mainly in Florida, southern California, and Hawaii. As growers learn more about this crop and how productive it can be, the acreage planted is likely to increase. Twelve dragon fruit cultivars grown on an Oxisol soil were evaluated for 5 years under intensive management at Isabela, PR. There were significant differences in number and weight of fruit per hectare among years. Cultivars exhibited an increase in fruit number and yield from 2010 to 2013 and then leveled off or declined. There were significant differences among cultivars for number of fruit and yield per hectare. Cultivars N97-17 and N97-15 produced significantly more fruit averaging 74,908 fruit/ha. Significantly higher fruit yield was obtained by cultivars N97-17, N97-20, N97-22, and NOI-13 averaging 17,002 kg·ha−1. Cultivar Cosmic Charlie had the lowest fruit yield, averaging only 25.1 kg·ha−1. Individual fruit weight was significantly higher in cultivars N97-20 and NOI-13 with fruit weight averaging 346.3 g. Cultivars NOI-16, N97-18, and Cosmic Charlie had significantly higher fruit soluble solids than others, averaging 17.4%. Some of the cultivars used in this study have shown horticultural potential and may serve as new planting material for growers.

Full access

Brian M. Irish, Ricardo Goenaga, Sirena Montalvo-Katz, Bernardo Chaves-Cordoba, and Inge Van den Bergh

Bananas are one of the most important fruits, serving as a cash crop and staple food in many regions of the world. In Puerto Rico, bananas are an important agricultural industry, supplying all the fruit needed for local demand. Diseases significantly limit production, and the evaluation and adoption of improved genetic resistance in bananas might provide an avenue for long-term sustainable production. To this end, nine enhanced genotypes from international selection and breeding programs were introduced and evaluated for their response to black leaf streak (BLS) (Pseudocercospora fijiensis Morelet) and for their agronomic performance. Bananas were evaluated as part of a collaborative effort between the U.S. Department of Agriculture Agricultural Research Service (USDA-ARS) Tropical Agriculture Research Station (TARS) and Bioversity International’s International Musa Testing Program (IMTP). Improved genotypes were compared with disease-resistant and disease-susceptible reference genotypes across two cropping cycles. Field plants were grown following commercial production practices with no BLS management. Significant differences in disease reactions were observed during both cropping cycles for test and reference genotypes. Under high disease pressure, ‘FHIA-21’, ‘FHLORBAN 916’, and ‘FHLORBAN 920’ test genotypes showed higher numbers of functional leaves and lower disease severity at harvest in both cycles. Short cycling times were also observed for the two FHLORBAN genotypes. Larger bunches with a high number of fruits were produced by the ‘IBP 12’, ‘IBP 5-B’, and ‘IBP 5-61’ selections. Several of the GCTCV test genotypes were extremely susceptible to BLS, did not perform as expected, and appeared to be off-types. Several of the test genotypes performed well, although currently none possessed all needed traits for a commercial banana substitute. Regardless, several test genotypes have agronomic potential because they have been selected for disease resistance to other important pathogens (e.g., fusarium wilt) and therefore have become part of the permanent TARS collection. Future efforts will continue to focus on the IMTP collaboration and introduction of promising banana genotypes for evaluations.

Free access

Chad E. Finn and John R. Clark