Search Results

You are looking at 11 - 20 of 20 items for

  • Author or Editor: Phillip A. Wadl x
  • Refine by Access: All x
Clear All Modify Search
Free access

Robert N. Trigiano, Alan S. Windham, Mark T. Windham, and Phillip A. Wadl

The wholesale nursery industry in Tennessee contributes more than $200 million to the annual economy of the state. Flowering dogwood, Cornus florida, is a major income species of this industry and annual sales in Tennessee are in excess of $50 million (Cappiello and Shadow, 2005). Two new fungal diseases that threatened the commercial production of dogwoods were reported in the last decade of the 20th century. During the early 1990s, dogwoods grown in Tennessee and other regions of the eastern United States (Daughtrey et al., 1996) were ravaged by an epidemic of dogwood anthracnose

Free access

Karen Harris-Shultz, Melanie Harrison, Phillip A. Wadl, Robert N. Trigiano, and Timothy Rinehart

Little bluestem (Schizachyrium scoparium) is a perennial bunchgrass that is native to North American prairies and woodlands from southern Canada to northern Mexico. Originally used as a forage grass, little bluestem is now listed as a major U.S. native, ornamental grass. With the widespread planting of only a few cultivars, we aimed to assess the ploidy level and genetic diversity among some popular cultivars and accessions in the U.S. Department of Agriculture National Plant Germplasm System collection. Ten microsatellite markers, with successful amplification, were developed by using sequences available in Genbank and additional simple sequence repeat (SSR) markers were generated by using ion torrent sequencing of a genomic library created from the cultivar The Blues. A total of 2812 primer sets was designed from high-throughput sequencing, 100 primer pairs were selected, and 82 of these primers successfully amplified DNA from the Schizachyrium accessions. Only 35 primer pairs, generating 102 scored fragments, were polymorphic among S. scoparium accessions. Twenty-two primer pairs generated more than four fragments per accession. The use of a repetitive sequence identifier found that of 117 examined sequences, only nine sequences did not have similarity to DNA transposons, retrotransposons, viruses, or satellite sequences. The most frequently identified fragments were the long terminal repeat retrotransposons Gypsy (177 fragments) and Copia (98 fragments) and the DNA transposon EnSpm (60 fragments). Using the software program Structure, cluster analysis of the SSR data for S. scoparium revealed four groups. The lowest genetic similarity between little bluestem samples was 86%, which was surprising as a high degree of morphological variation is seen in this species. Furthermore, no variation in ploidy level was seen among little bluestem samples. These microsatellite markers are the first sequence-specific markers designed for little bluestem and can serve as a resource for future genetic studies.

Free access

Phillip A. Wadl, Timothy A. Rinehart, Adam J. Dattilo, Mark Pistrang, Lisa M. Vito, Ryan Milstead, and Robert N. Trigiano

Pityopsis ruthii is an endangered species endemic to the Hiwassee and Ocoee Rivers in Tennessee. As part of a recovery effort focused on P. ruthii, vegetative propagation and in vitro multiplication and seed germination techniques were developed. Plants were vegetatively propagated using greenhouse stock plants and wild-collected stems. Rooting occurred with and without auxin treatments but was greatest when 0.1% indole-3-butyric acid (IBA) talc was applied to the vegetative cuttings; rooting was lowest when flowering stems were used. Pro-Mix BX substrate provided the most consistent rooting. In vitro multiplication was accomplished by the removal of lateral shoots from in vitro-grown plants that were rooted on Murashige and Skoog (MS0) basal medium with 270 clones produced from a single individual after 4 months. Nineteen clones were transplanted and secured with bonded fiber matrix into their natural habitat and 14 survived for 1 year. To avoid genetic swamping of native populations with the introduction of large numbers of genetically identical individuals through clonal propagation, seed-based propagation efforts were explored. Open-pollinated seeds were collected, disinfested and germinated, and seedlings established on MS medium. Seeds were submersed in 70% ethanol for 1 minute and briefly flamed. Seeds were surface-sterilized in a range [10% to 50% (v/v)] Clorox® bleach solutions with vigorous shaking for 20 minutes, rinsed three times in sterile water, and germinated on MS0. Removal of pappus from seeds was required for successful disinfestations, but the bleach concentration was not critical. Successful propagation is a step toward the conservation and recovery of P. ruthii and should allow future reintroduction projects.

Open access

Phillip A. Wadl, Livy H. Williams III, Matthew I. Horry, and Brian K. Ward

The yield and insect resistance of 12 sweetpotato (Ipomoea batatas) clones grown in two different production systems (organic black plastic mulch and conventional bare ground) were evaluated in 2016 and 2017 in coastal South Carolina. Significant differences in total storage root yield, marketable storage root yield, U.S. No. 1 storage root yield, and percent of U.S. No. 1 storage roots in all trials were found, except for percent of U.S. No. 1 storage roots in 2017 for the organic black plastic mulch trial. In the organic black plastic mulch trials, ‘Bonita’ and USDA-04-136 consistently produced high marketable yields, whereas ‘Ruddy’ and USDA-W388 consistently produced the lowest marketable yields. ‘Averre’, ‘Beauregard’, ‘Covington’, and USDA-09-130 exhibited variable performance, with marketable yields among the highest in a single year. For the conventional trials, USDA-04-136 consistently produced high marketable yields, whereas ‘Ruddy’ and USDA-W-388 consistently produced the lowest marketable yields. ‘Averre’, ‘Bonita’, ‘Covington’, and USDA-09-130 exhibited variable performance, with marketable yields among the highest in a single year. For the organic black plastic mulch, significant differences were detected in the percent of uninjured roots and percent white grub (primarily Plectris aliena) damage in 2016 and in wireworm (Elateridae)-cucumber beetle (Diabrotica)-flea beetle (Systena) severity index (WDS severity index) in 2016 and 2017. USDA-04-136 and USDA-W-388 consistently had the lowest WDS severity index, whereas ‘Covington’ consistently had the highest WDS severity index. For the conventional trials, significant differences were found among clones in both years for all insect rating variables, except for percent sweetpotato weevil (Cylas formicarius elegantulus) damage. ‘Ruddy’, USDA-04-136, and USDA-W-388 consistently yielded the highest percent of uninjured roots, whereas ‘Averre’, ‘Bonita’, SC-1149-19, and USDA-09-130 consistently had the lowest percent of uninjured roots. The research reported here for yield and insect resistance under conventional and organic production systems will be useful for producers in the selection of cultivars suitable for growth in South Carolina.

Free access

Phillip A. Wadl, Xinwang Wang, John K. Moulton, Stan C. Hokanson, John A. Skinner, Timothy A. Rinehart, Sandra M. Reed, Vincent R. Pantalone, and Robert N. Trigiano

Cross-species transferability of simple sequence repeats (SSRs) is common and allows SSRs isolated from one species to be applied to closely related species, increasing the use of previously isolated SSRs. The genus Cornus consists of 58 species that are ecologically and economically important. SSRs have previously been isolated from C. florida and C. kousa. In this study, 36 SSRs were tested on taxa from 18 Cornus species and hybrids for cross-species transferability and genetic diversity was calculated for each locus using polymorphism information content (PIC). Cross-species transferability of SSR loci was higher in more closely related species and PIC values were high. Evidence was found for conserved primer sites as determined by the amplification of SSR loci in the taxa examined. Polymerase chain reaction products were cloned and sequenced for three SSR loci (CF48, CF59, and CF124) and all individuals sequenced contained the appropriate repeat. Phylogenetic relationships of 14 Cornus species were inferred using nucleotide sequences of SSR locus CF48. The most parsimonious tree resulting from this analysis was in concordance with phylogenies based on matK and internal transcribed spacer sequences. The SSR loci tested in this study will be useful in future breeding, population, and genetic studies within Cornus.

Free access

Phillip A. Wadl, John A. Skinner, John R. Dunlap, Sandra M. Reed, Timothy A. Rinehart, Vincent R. Pantalone, and Robert N. Trigiano

Flowering (Cornus florida L.) and kousa (C. kousa Hance) dogwoods are ornamental trees valued for their four-season appeal, but also for their importance to retail and wholesale nurseries. The popularity of kousa dogwood has increased in recent years as a result of its resistance to dogwood anthracnose and powdery mildew as compared with flowering dogwood, which is typically susceptible to those diseases. This range of resistance allows the development of intra- and interspecific cultivars with multiple disease resistance or a combination of disease resistance and specific ornamental traits. Breeding requires controlled crosses that are usually done manually, which is a labor-intensive process. Cornus florida and C. kousa have generally been found to be self-incompatible allowing for the breeding process to be made more efficient by not having to emasculate flowers. We have capitalized on the natural ability of honeybees and the self-incompatible nature of dogwood to perform self- and crosspollinations of flowering and kousa dogwood. Self-pollinations were conducted in 2006 and 2007 with C. florida ‘Appalachian Spring’ and ‘Cherokee Brave’ and with C. kousa ‘Blue Shadow’ and Galilean®. The flowering dogwood self-pollinations resulted in no seed production, whereas the kousa dogwood self-pollinations resulted in low seed production, indicating self-incompatibility. Intra- and interspecific crosses of flowering and kousa dogwood cultivars and breeding lines were conducted in 2006 to 2008. Honeybees were effective in facilitating seed production for all intraspecific crosses conducted. Seedling phenotypes of putative intra- and interspecific hybrids are similar and practically indistinguishable, so dogwood-specific simple sequence repeats were used to verify a sample of the putative hybrids. The results demonstrated that honeybees were effective in performing controlled pollinations and that honeybee-mediated pollinations provide an alternative to time-consuming hand pollinations for flowering and kousa dogwood.

Free access

Phillip A. Wadl, Xinwang Wang, Andrew N. Trigiano, John A. Skinner, Mark T. Windham, Robert N. Trigiano, Timothy A. Rinehart, Sandra M. Reed, and Vincent R. Pantalone

Flowering dogwood (Cornus florida) and kousa dogwood (C. kousa) are popular ornamental species commonly used in the horticultural industry. Both trees are valued for their beautiful floral display and four-season appeal. Species-specific simple sequence repeat (SSR) loci were used to genotype and assess genetic diversity of 24 flowering dogwood cultivars and breeding lines and 22 kousa dogwood cultivars. Genetic diversity was determined by allele sharing distances and principal coordinate analysis and was high in both species. Molecular identification keys were developed for cultivars and breeding lines of each species using a few polymorphic SSRs loci (four in C. florida and five in C. kousa). Most (18 of 24) of the flowering dogwood and all (22 of 22) kousa dogwood accessions could be distinguished from each other using these SSRs; those that could not were resolved using DNA amplification fingerprinting. The reliability of both keys was assessed using five anonymous cultivars for each dogwood species, which were correctly identified using the molecular keys. The genetic information presented here will be useful for identification and verification of cultivars for nurseries and as molecular markers for breeders and researchers.

Free access

Deborah Dean, Phillip A. Wadl, Xinwang Wang, William E. Klingeman, Bonnie H. Ownley, Timothy A. Rinehart, Brian E. Scheffler, and Robert N. Trigiano

Viburnum dilatatum is a popular and economically important ornamental shrub. The wide range of desirable horticultural traits, paired with a propensity for seedlings to become invasive, has created interest in the genetics and breeding of this species. To investigate the genetic diversity of V. dilatatum, microsatellite loci were identified from a GT-enriched genomic library constructed from V. dilatatum ‘Asian Beauty’. Eleven microsatellite loci have been characterized on a group of 16 different related V. dilatatum cultivars and hybrids. Two to 12 alleles were identified per locus, and the polymorphism information content (PIC) values ranged from 0.36 to 0.87. Expected heterozygosity (He) ranged from 0.48 to 0.88 and observed heterozygosity (Ho) ranged from 0 to 0.73. This set of molecular markers also exhibited expected transferability between various V. dilatatum cultivars and two hybrids with V. japonicum. As a consequence, these markers will aid in breeding for new cultivar development, assist with early detection and screening of plants that have escaped cultivation, and are expected to help in refining the phylogenetic relationship of V. dilatatum to other species and genera within the Adoxaceae.

Free access

Deborah Dean, Phillip A. Wadl, Denita Hadziabdic, William E. Klingeman, Bonnie H. Ownley, Timothy A. Rinehart, Adam J. Dattilo, Brian Scheffler, and Robert N. Trigiano

Viburnum rufidulum is a deciduous tree native to North America that has four-season appeal, which provides commercial horticultural value. In addition, the plant has unique and attractive red pubescence on leaf buds and petioles, common to no other Viburnum species. As habitat undergoes development and subsequent fragmentation of native plant populations, it is important to have baseline genetic information for this species. Little is known about the genetic diversity within populations of V. rufidulum. In this study, seven microsatellite loci were used to measure genetic diversity, population structure, and gene flow of 235 V. rufidulum trees collected from 17 locations in Kentucky and Tennessee. The genotype data were used to infer population genetic structure using the program InStruct and to construct an unweighted pair group method with arithmetic mean dendrogram. A single population was indicated by the program InStruct and the dendrogram clustered the locations into two groups; however, little bootstrap support was evident. Observed and expected heterozygosity were 0.49 and 0.78, respectively. Low-to-moderate genetic differentiation (F ST = 0.06) with evidence of gene flow (Nm = 4.82) was observed among 17 populations of V. rufidulum. A significant level of genetic diversity was evident among V. rufidulum populations with most of the genetic variations among individual trees (86.37%) rather than among populations (13.63%), and a Mantel test revealed significant correlation between genetic and geographical distance (r = 0.091, P = 0.001). The microsatellites developed herein provide an initial assessment or a baseline of genetic diversity for V. rufidulum in a limited area of the southeastern region of the United States. The markers are a genetic resource and can be of assistance in breeding programs, germplasm assessment, and future studies of V. rufidulum populations, as this is the first study to provide genetic diversity data for this native species.

Free access

Xinwang Wang, Phillip A. Wadl, Cecil Pounders, Robert N. Trigiano, Raul I. Cabrera, Brian E. Scheffler, Margaret Pooler, and Timothy A. Rinehart

Genetic diversity was estimated for 51 Lagerstroemia indica L. cultivars, five Lagerstroemia fauriei Koehne cultivars, and 37 interspecific hybrids using 78 simple sequence repeat (SSR) markers. SSR loci were highly variable among the cultivars, detecting an average of 6.6 alleles (amplicons) per locus. Each locus detected 13.6 genotypes on average. Cluster analysis identified three main groups that consisted of individual cultivars from L. indica, L. fauriei, and their interspecific hybrids. However, only 18.1% of the overall variation was the result of differences between these groups, which may be attributable to pedigree-based breeding strategies that use current cultivars as parents for future selections. Clustering within each group generally reflected breeding pedigrees but was not supported by bootstrap replicates. Low statistical support was likely the result of low genetic diversity estimates, which indicated that only 25.5% of the total allele size variation was attributable to differences between the species L. indica and L. fauriei. Most allele size variation, or 74.5%, was common to L. indica and L. fauriei. Thus, introgression of other Lagestroemia species such as Lagestroemia limii Merr. (L. chekiangensis Cheng), Lagestroemia speciosa (L.) Pers., and Lagestroemia subcostata Koehne may significantly expand crapemyrtle breeding programs. This study verified relationships between existing cultivars and identified potentially untapped sources of germplasm.