Search Results

You are looking at 11 - 20 of 42 items for

  • Author or Editor: John R. Stommel x
  • Refine by Access: All x
Clear All Modify Search
Free access

John R. Stommel and Robert J. Griesbach

Free access

John R. Stommel and Robert J. Griesbach

Considerable diversity exists in Capsicum L. germplasm for fruit and leaf shape, size and color, as well as plant habit. This morphological diversity, together with diverse ripe fruit color and varying hues of green to purple and variegated foliar pigmentation, affords myriad opportunities to develop unique cultivars for ornamental applications. The Agricultural Research Service of the United States Department of Agriculture announces the release of a new pepper [Capsicumannuum (L.)] cultivar named `Black Pearl'. `Black Pearl' is intended for ornamental applications and affords growers a new crop to add to their bedding and landscape plant assortment. `Black Pearl' combines black foliage with erect clusters of small round red-pigmented fruit. The vibrant fruit and foliage colors of this new cultivar add interest to the summer and fall garden. Black Pearl' has been trialed extensively for use as a bedding plant where its compact growth habit, black foliage, and brightly colored fruit provide an attractive ornamental display. Limited evaluations suggest that this cultivar is equally well suited for pot culture under high light conditions. `Black Pearl' was designated a 2006 All America Selection award winner after completion of national trials in 2004. `Black Pearl' is a release made available from a cooperative research and development agreement with Pan American Seed Company. Seed of `Black Pearl' is available from Pan American Seed Company, 622 Town Road, West Chicago, IL 60185. Plant Variety Protection for `Black Pearl' is pending.

Free access

John R. Stommel and Robert J. Griesbach

Free access

John R. Stommel and Robert J. Griesbach

Free access

John R. Stommel and Kathleen G. Haynes

Anthracnose, caused by Colletotrichum coccodes, is a serious ripe tomato fruit rot disease. Genetic resistance to anthracnose is not available in commercial tomato cultivars, but has been reported in small-fruited Plant Introductions (P.I.), and with lesser intensity in a number of breeding lines. Transfer of high levels of resistance from these breeding lines or P.I.s to elite materials has proven difficult. Inheritance of resistance has been described as complex with at least six loci influencing resistance reactions. Segregating populations originating from a cross between a susceptible tomato breeding line and a large-fruited breeding line (88B147) with resistance derived from Lycopersicon esculentum var. cerasiforme P.I. 272636, were evaluated for anthracnose resistance. Analysis of anthracnose resistance in puncture-inoculated fruit indicated small, but significant, additive genetic effects for resistance. Additional populations were developed from crosses of a susceptible inbred processing tomato cultivar with: 1) the resistant P.I. 272636, 2) an unadapted small-fruited resistant line developed from P.I. 272636, and 3) the large-fruited breeding line 88B147, also with resistance derived from P.I. 272636. Small additive effects identified in large-fruited material, in comparison to the resistant P.I., suggests that resistance loci have been lost during germplasm development. This is consistent with the relatively larger lesions observed in large-fruited lines derived from P.I. 272636. Positive correlations were noted between small fruit size and high levels of anthracnose resistance. Identification of molecular markers linked to resistance genes in the respective populations will be discussed.

Free access

John R. Stommel* and Robert J. Griesbach

Anthocyanins contribute to color development in economically important vegetables, fruits and floral crops. Their expression is critical to product sensory quality attributes, potential nutritive value, and stress response. Anthocyanins are synthesized in response to numerous environmental factors including temperature and light stress and pathogen attack. We have developed several Capsicum lines, including `02C27', expressing anthocyanin pigmentation differentially in various tissues (leaf, stem, fruit and flower). HPLC analysis demonstrated that the anthocyanins within the fruit, flower and leaves of Capsicum `02C27' were identical and that the major anthocyanidin was a delphinidin glycoside. Line `02C27' exhibits anthocyanin foliar pigmentation that is accumulated differentially in response to temperature stress. Under unfavorable low temperature (20 °C day/18 °C night), mature Capsicum leaves contained 4.6 times less anthocyanin per gram fresh weight than under high (30 °C day/28 °C; day/night) temperatures. Besides containing less anthocyanin in mature leaves, young immature leaves did not develop color as quickly under the lower temperature. Utilizing cloned and sequenced gene fragments of pepper chalcone synthase (CHS), dihydroflavonol 4-reductase (DFR), and anthocyanidin synthase (ANS), we evaluated the role of transcription in regulation of flavonol biosynthesis. Analysis of anthocyanin composition and gene expression data indicated that the block in anthocyanin formation in less pigmented leaves occurred at anthocyanin synthase. In contrast to wild tupe plants, this mutant also exhibited reduced flowering and failed to set fruit under high temperature, long day conditions.

Free access

John R. Stommel and Robert J. Griesbach

Free access

John R. Stommel and Robert J. Griesbach

Free access

John R. Stommel and Robert J. Griesbach

Ornamental peppers are a novel and growing segment of the ornamentals industry. Currently available varieties are utilized as pot plants and in bedding plant applications. Utilizing unimproved populations developed from initial crosses with Indian Capsicum land races, germplasm lines with unique gene combinations for multiple fruiting, fruit orientation, leaf pigmentation and leaf variegation were developed and released by USDA-ARS. Via introgression of diverse Capsicum species accessions and heirloom varieties into these populations, more recent efforts seek to exploit abundant genetic variation for fruit shape, size, color and pungency, foliar attributes, and plant growth habit to develop new pepper germplasm for ornamental and dual ornamental/culinary applications. Fruit pungency of selected material may range from mild to extremely pungent. Fruit shape may be round, conical, or lobed. Whereas small fruit size is generally well suited for ornamental applications, ornamental/culinary types exploit larger upright conical or small bell-shaped fruit. Plant foliage may be uniformly green in color, exhibit varying degrees of anthocyanin accumulation, or display variegation. Inheritance of selected attributes, potential barriers to development of select recombinants, and examples of representative advanced selections in the breeding program will be presented.

Free access

John R. Stommel and Kathleen G. Haynes

Fruit of the cultivated tomato (Lycopersicon esculentum Mill.) store predominantly glucose and fructose whereas fruit of the wild species L. hirsutum Humb. & Bonpl. characteristically accumulate sucrose. Reducing sugar and sucrose concentrations were measured in mature fruit of parental, F1, F2, and backcross (BC1) populations derived from an initial cross of L. esculentum `Floradade' × L. hirsutum PI 390514. Generational means analysis demonstrated that additive effects were equal to dominance effects for percentage of reducing sugar. It was determined that a single major gene, dominant for a high percentage of reducing sugar, regulates the percentage of reducing sugar in tomatoes. We propose that this gene be designated sucr. Only additive effects were demonstrated to be important for glucose: fructose ratios. Using L. hirsutum as a donor parent for increasing total soluble solids concentration in the cultivated tomato is discussed.