Search Results

You are looking at 11 - 14 of 14 items for

  • Author or Editor: James T. Yeager x
  • Refine by Access: All x
Clear All Modify Search
Full access

John P. Edstrom, Joseph H. Connell, Warren C. Micke, and James T. Yeager

Full access

Stephen M. Southwick, Kitren G. Weis, James T. Yeager, Michael E. Rupert, and Janine K. Hasey

In 1994, we established that a surfactant, Armothin (AR), reduced fruit set when applied as 3% and 5% AR at 100 gal/acre with a Stihl mistblower to `Loadel' clingstone peach [Prunus persica (L.) Batsch]. In 1995 we compared 3% AR at volumes of 100 and 200 gal/acre (935 and 1870 L.ha-1, the volumes most commonly used by tree fruit growers in California) applied with commercial airblast sprayer; overthinning resulted with the latter. In 1996, we applied 3% AR at 100 gal/acre and 1% AR at 200 gal/acre. In 1995, differential applications of 3% AR at 100 gal/acre (two-thirds of the material applied to either the upper or lower canopy) reduced fruit set in the upper canopy in proportion to the amount of chemical applied (twice as much fruit set reduction with twice as much chemical); fruit set in the lower canopy was reduced by an equal amount regardless of amount of chemical used. Salable yields, equivalent to those obtained by hand thinning, and improved fruit size were achieved with all treatments of 3% AR at 100 gal/acre in 1995 with a 76% reduction in hand thinning. Following a low-chill winter (1995-96) with a protracted bloom, flower bud density (return bloom) was significantly greater in 1995 AR-treated trees. In 1996, treatment with AR did not result in fruit set reduction due to the protracted bloom and poor weather conditions before and after bloom. Nonetheless, 1% AR at 200 gal/acre applied in 1996 increased salable yield and increased final fruit mass. Return bloom in 1997 was equal among 1996 treatments.

Free access

Bruce D. Lampinen, Kenneth A. Shackel, Stephen M. Southwick, Bill Olson, James T. Yeager, and Dave Goldhamer

The sensitivity of French prune (Prunus domestica L. syn. `Petite d'Agen') to water deprivation at various fruit growth stages was studied over 3 years in a drip-irrigated orchard. The soil was a poorly drained Rocklin fine sandy loam with a hardpan that varied from 4.75 to I m from the surface at the northern end of the orchard (shallow soil condition) to no hardpan apparent to 2 m below the surface at the southern end of the orchard (deep soil condition). Water deprivation during a) the first exponential phase of fruit growth or stage I, b) lag phase of fruit growth or stage II, c) first half of stage II, d) second half of stage II, e) second exponential fruit growth phase or stage III, and f) postharvest was compared to a fully watered control. Water deprivation caused the most severe reduction in tree water status when it was imposed over longer periods of time and during periods of high evaporative demand and also had mm-e severe effects under shallow soil conditions. Compared to the control treatment, deprivation during all of stage II (the most severe deprivation treatment) was associated with increased Ilowering, reduced fruit hydration ratio, and smaller fruit size under all soil conditions. Under deep soil conditions, deprivation during all of stage II resulted in increased return bloom, which was reflected in higher fruit loads and dry t-ha-' fruit yield. However, under shallow soil conditions, even though return bloom was increased with this treatment, fruit loads and dry t·ha-1 fruit yields were the lowest of all treatments. These differences in treatment effects in shallow vs. deep soil conditions were most likely the result of increased fruit drop, which occurred under shallow soil conditions as a result of rapid onset and increased severity ofstress. Treatments that had parallel effects in shallow and deep soil conditions resulted in statistically significant overall treatment effects, while those that had opposing effects in shallow vs. deep soil conditions did not show significant overall treatment effects. Substantial alternate hearing occurred, and, in general, dry fruit yields above ≈9 dry t·ha-1 resulted in a decrease in fruit load the following year, while loads below this value showed a subsequent increase. Based on a separate estimate of the theoretically stable value for each treatment, all deprivation treatments resulted in a higher sustainable fruit load compared to the fully irrigated control. This suggests that, for the purpose of prune fruit production, there may be an optimal level of tree water stress.

Free access

Stephen M. Southwick, Kitren G. Weis, James T. Yeager, and Hong Zhou

Whole-tree sprays of Release LC [predominantly gibberellic acid] (GA,) were applied in a commercial peach [Prunus perisca (L.) Batsch.] orchard in the California Central Valley on three dates from mid-June (about 90 days after full bloom = 28 days before harvest) to late July (14 days postharvest) 1993 at 50, 75, 100, and 120 mg·liter-1. Gibberellin (GA) reduced the number of flowers differentiated in 1993, thereby reducing fruit density in 1994, when sprays were applied by early July 1993. Sprays in late July did not reduce flowering and fruiting density in the following year. In 1994, there were fewer fruit located on the proximal third of the shoot after GA sprays of 75,100, and 120 mg-liter' applied on 15 June compared to hand-thinned controls, and reduction was linear with increase in GA rate. Fruit numbers in the middle and distal sections of shoots were reduced by all 15 June and some 9 July GA sprays, with fewer fruit as concentration increased. However, the distribution of fruit within shoot sections, after GA treatments during floral differentiation, expressed as a percentage of the total number of fruit along fruiting shoots, showed even fruiting compared with hand thinning. Due to reduced flowering in response to GA treatments in June and early July 1993, the hand-thinning requirement was significantly reduced, with no thinning required in 1994 from 15 June 1993 GA sprays. All sprays applied in early July resulted in 40% to 60% fewer fruit removed during thinning than the nontreated controls. Sprays in late July were ineffective. Sprays of GA applied in mid-June at 50,75, 100, and 120 mg·liter and sprays of 120 mg·liter-1 GA applied in early July (4 days preharvest) increased the firmness of `Loadel' cling peach (about 26% improvement in June sprays) in 1993. The salable yield of fruit (after removal of the undersized fruit) was the same on hand thinned and on non-hand thinned trees treated with GA on 15 June at 50 mg·liter-1. The salable yield of fruit was increased by GA sprays of 50 and 75 mg·liter applied on 9 July 1993 compared to controls. There were no differences in fruit size (by weight or diameter) among the aforementioned treatments and hand thinning. GA sprays of 75,100, and 120 mg-liter' applied on 15 June 1993 tended to reduce salable yield, but fruit size increased with decreased yield. Based on the results obtained in 1993 and 1994, we believe that Release LC has good potential for chemically thinning peaches in California.