Search Results

You are looking at 11 - 19 of 19 items for

  • Author or Editor: James A. Flore x
  • Refine by Access: All x
Clear All Modify Search
Full access

Moreno Toselli, Costanza Zavalloni, Bruno Marangoni, and James A. Flore

15Nitrogen-ammonium nitrate was applied to four `Mutsu' apple (Malus ×domestica Borkh.) trees 40 days before harvest of 1996 (summer supplied nitrogen, SUN) and four others at full bloom in 1997 (spring supplied nitrogen, SPN) to evaluate the effect of application timing on N partitioning in mature trees. At leaf fall the largest amount of SUN was partitioned to roots and 2- to 4-year-old wood; the largest amount of SPN was partitioned to fruit and leaves and only a small amount detected in the roots. SUN did not increase N concentration in fruit or modify fruit firmness and soluble solids concentration, although it contributed to building up N reserves in the perennial woody organs. In 1997, as a result of the different timings of N supply, two sources of labeled N were distinguished and monitored in the vegetative organs: 1) the remobilized N, taken up in summer of 1996, stored in winter and then translocated to the growing tissues; 2) the newly absorbed N, taken up and moved to the canopy after the 1997 spring supply. Both fractions of remobilized and newly uptaken labeled N contributed to leaf and fruit N. Remobilized 15N was provided principally by roots which, from August to leaf fall, decreased their percentage of 15N by ≈18%, replacing the labeled with unlabeled N to maintain a constant concentration of total N.

Free access

Leonardo Lombardini, Mauro Falusi, Roberto Calamassi, and James A. Flore

Aleppo Pine (Pinus halepensis Mill.) is known to be the most drought-resistant Mediterranean Pine. This species is widely distributed throughout the Mediterranean region and displays a high intraspecific variability, with respect to its physiological and morphological response to environmental conditions. In this experiment we evaluated the response of Pinus halepensis seedlings to drought. Sixty germinated seeds (accession A6, Shaharia, Israel) were grown in soil for 8 weeks and then transferred to black plexiglass tanks containing half-strength air-sparged Hoagland solution. After 6 weeks of acclimation to hydroponics, the osmotic potential of the solution was lowered by adding polyethylene-glycol (PEG) 8000. Water potential was lowered in 0.2 MPa increments every 4 days, until a final value of –0.8 was reached. The seedlings were then maintained at –0.8 MPa for a further 8 days. Ultrasonic acoustic emissions, pressure–volume (P–V) curves, shoot and root growth, leaf area, xylem diameter, root apex mitotic index and cell length were measured on control and stressed seedlings. Seedlings were then transferred to normal Hoagland solution for 24 hours to simulate rewatering, and P–V curves and ultrasonic emissions measurements were repeated. Results showed that the final root growth is maintained in the stressed seedlings at the same rate as controls, whereas shoot growth was significantly reduced. The leaf area was reduced by stress to 36%, but the xylem diameter only to 10%, leading to a lower leaf area:xylem section ratio in the stressed plants. Ultrasonic emissions in the stressed plants were 365% of the control, and 182%, after rewatering. Specific details of the growth and physiology data are presented.

Free access

Rodney T. Fernandez, Ronald L. Perry, and James A. Flore

`Imperial Gala' on M.9 EMLA, MM.111 and Mark rootstocks were planted in a rain exclusion shelter. Two drought stress periods lasting approximately 1 month each were imposed during 1991. Water was supplied at 2 liters per day per tree before and after each drought cycle while water was withheld from half of the trees during the drought stresses. Maximal and variable chlorophyll fluorescence and fluorescence quenching were significantly reduced by the drought stress with M.111 generally affected first and with the largest difference between drought and control followed by Mark and then M.9. Leaf and stomatal conductance, assimilation and transpiration usually occurred first and were lowest for M.9 followed by Mark and then M.111 during the first stress cycle while Mark responded more rapidly and to a greater extent than M.9 and M.111 during the second stress. Water potential was lower for the stressed trees during both stress periods but osmotic and turgor potentials were reduced only during the first stress period. Changes in water relations were noticed first and to a greater extent for Mark followed by M.9 with M.111 exhibiting the least sensitivity and differences.

Free access

David P. Miller, G. Stanley Howell, and James A. Flore

The measurement of whole-plant CO2 uptake integrates leaf-to-leaf variability, which arises from such sources as angle of incident radiation, source/sink relationships, age, and biotic or abiotic factors. Respiration of above-ground vegetative and reproductive sinks is also integrated into the final determination of whole-plant CO2 assimilation. While estimates of whole-plant CO2 uptake based on single-leaf determinations have been used, they do not accurately reflect actual whole-plant assimilation. Chambers were constructed to measure gas exchange of entire potted grapevines. The design and construction are simple, inexpensive, and easy to use, allowing for the measurement of many plants in a relatively short time. This enables the researcher to make replicated comparisons of the whole-plant CO2 assimilation of various treatments throughout the growing season. While CO2 measurement was the focus of this project, it is also possible to measure whole-plant transpiration with this system.

Free access

R. Thomas Fernandez, Ronald L. Perry, and James A. Flore

`Imperial Gala' apple trees (Malus ×domestica Borkh.) on M.9 EMLA, MM.111, and Mark rootstocks were subjected to two drought-stress and recovery periods in a rainshelter. Water relations, gas-exchange parameters per unit leaf area and per tree, chlorophyll fluorescence, and leaf abscisic acid content were determined during each stress and recovery period. Whole-plant calculated gas exchange best indicated plant response to drought stress, with consistent reductions in CO2 assimilation, transpiration, and leaf conductance. Variable and maximal chlorophyll fluorescence and fluorescence quenching were not as sensitive to stress. Other fluorescence parameters showed little difference. The most consistent decreases due to stress for gas exchange per square meter were in transpiration and leaf conductance, with few differences in CO2 assimilation and fewer for mesophyll conductance, internal CO2 concentration, and water-use efficiency. Leaf water potential was consistently lower during drought stress and returned to control values upon irrigation. Leaf abscisic acid content was higher for drought-stressed trees on M.9 EMLA than control trees during the stress periods but inconsistently different for the other rootstock treatments. Trees on M.9 EMLA were least affected by drought stress, MM.111 was intermediate, and Mark was the most sensitive; these results are consistent with the growth data.

Free access

Sarah E. Bruce, D. Bradley Rowe, and James A. Flore

Chlorophyll fluorescence over the course of stem cutting propagation was examined in 10 cultivars of Taxus ×media (Taxus baccata L. × T. cuspidata Sieb. & Zucc.), including `Brownii', `Dark Green Pyramidalis', `Dark Green Spreader', `Densiformis', `Densiformis Gem', `Hicksii', `L.C. Bobbink', `Runyan', `Tauntoni', and `Wardii'. The fluorescence value measured was the ratio of variable over maximum chlorophyll fluorescence (Fv/Fm). This value reflects the maximum dark-adapted photochemical efficiency of photosystem II (PSII) reaction centers involved in photosynthesis and is an indirect measure of plant stress. The objective of this study was to examine Fv/Fm as a method for stock plant selection and for monitoring rooting progress of various cultivars. Fv/Fm varied significantly (P ≤ 0.05) among cultivars, initially and over time. However, there was significant overlap among some cultivars. The Fv/Fm decreased dramatically during cold storage, but usually returned to original levels after several weeks in the propagation beds. This appeared to be a reflection of the reduction of water stress as the cuttings formed roots. Initial stock plant Fv/Fm was not correlated (P ≤ 0.05) with rooting percentage, root number, root dry weight, or root length, indicating that Fv/Fm is not a reliable indicator of stock plant rooting potential. Visual assessment is just as reliable.

Free access

Abdul K. Janoudi, Irvin E. Widders, and James A. Flore

Cucumber plants were cultured in a greenhouse and subjected to either well-watered or water deficit conditions that reduced leaf water potential to-0.6 MPa. Leaf gas exchange measurements were conducted using an open gas exchange system. Carbon dioxide assimilation (A) attained saturation at a photon flux density (PFD) of 1000 μmol·m-2·s-1 (400-700 nm). There were no significant differences in A at ambient temperatures between 16 and 34C. Water use efficiency decreased rapidly with increasing vapor-pressure deficits to 2.5 kPa. Water stressed plants had lower stomata1 conductances and CO2 assimilation rates. The decrease in A was only partially due to stomata1 closure. The A vs. intercellular CO (Ci) relationship for stressed leaves revealed a change in the CO, compensation point, and that nonstomatal factors were contributing to the decrease in A in stressed plants. Thus, feedback inhibition of A may have occurred through photoassimilate accumulation. The concentrations of sucrose and raffinose were higher, and the concentration of stachyose was lower in leaves of stressed than of well-watered plants.

Free access

R. Thomas Fernandez, Ronald L. Perry, and James A. Flore

`Imperial Gala' apple (Malus domestica Borkh.) trees, trained to two shoots, on M.9 EMLA, MM.111, and Mark rootstocks were subjected to two drought-stress and recovery periods in a rainshelter. Leaf growth rate, leaf area, leaf emergence, shoot length, and trunk cross-sectional area were measured during each stress and recovery period. Leaf growth rate was reduced during both stress periods but most consistently during the second drought stress. Length of the less-vigorous shoot was reduced most consistently due to drought stress but did not recover upon irrigation. Leaf emergence and trunk cross-sectional area increment were inconsistent in response to stress. Tree growth was reduced by drought stress to the greatest extent for trees on Mark, with MM.111 intermediate and M.9 EMLA least affected. At termination, the plants were separated into roots, current-season shoot growth, previous-season shoot growth, and rootstock, and dry weights were measured. Dry weights confirmed the growth measurements taken during the experiment with a 16%, 27%, and 34% reduction in total plant dry weight for drought-stressed trees on M.9 EMLA, MM.111, and Mark, respectively, compared to corresponding controls. It was concluded that Mark was the most sensitive of the three rootstocks followed by MM.111; M.9 EMLA was the most drought resistant.

Free access

Mark A. Hubbard, James A. Flore, John C. Wise, and James W. Johnson

European red mite (Panonychus ulmi) populations were monitored in a tart cherry (Prunus cerasus `Montmorency') orchard and the effects on photosynthesis determined. Mites levels were controlled in some trees by miticide applications to establish different cumulative mite*days in the trees. Photosynthetic inhibition caused by insect injury was also simulated by spraying other trees with 78 ppm Terbacil at one of four different times during the season, The mite*days accumulated in 1993 ranged from 937 to 2205, however, there were no differences in single leaf or whole tree CO2 assimilation, chlorophyll a fluorescence, or chlorophyll levels among the different levels of mite damage. Likewise, there were no differences in these same parameters among the Terbacil-treated trees except that photosynthesis was reduced on treated trees for 10-14 days, after which photosynthesis recovered to the level of the controls. There were no differences in yield or fruit quality among any treatments, and cold hardiness and return fruiting characteristics will be measured.