Search Results

You are looking at 11 - 15 of 15 items for

  • Author or Editor: J. W. Grosser x
  • Refine by Access: All x
Clear All Modify Search
Free access

Jude W. Grosser, Frederick G. Gmitter Jr., Franca Sesto, Xiu Xin Deng, and J.L. Chandler

Protoplasm culture following polyethylene glycol (PEG) -induced fusion resulted in the regeneration of somatic hybrid plants from the following six parental combinations: Citrus sinermis (L.) Osbeck cv. Hamlin + Severinia buxifolia (Poir.) Tenore (Chinese box-orange); C. reticulate Blanco cv. Cleopatra + Poncirus trifoliata (L.) Raf. cv. Flying Dragon; C. reticulate cv. Cleopatra + Swingle citrumelo (C. paradisi Macf. × P. trifoliata); C. sinensis cv. Hamlin + C. jambhiri cv. Rough lemon; C. sinensis cv. Valencia + C. jambhiri cv. Rough lemon; and C. paradisi cv. Thompson + `Murcott' tangor (purported hybrid of C. reticulate × C. sinensis). Diploid plants were regenerated from nonfused embryogenic culture-derived protoplasts of `Cleopatra' mandarin and `Hamlin' and `Valencia' sweet orange, and from nonfused leaf-derived protoplasts of Rough lemon and `Mnrcott'. Regenerated plants were classified according to leaf morphology, chromosome number, and isozyme analyses. All of the somatic hybrids reported herein are tetraploid (2n = 4x = 36), with the exception of the `Hamlin' + S. buxifolia hybrid, which was unexpectedly found to have a chromosome number of 2n = 27. These six new somatic hybrids have potential in citrus scion and rootstock improvement for commercial use.

Full access

Rhuanito S. Ferrarezi, Alan L. Wright, Brian J. Boman, Arnold W. Schumann, Fred G. Gmitter, and Jude W. Grosser

Completely enclosed screen houses can physically exclude contact between the asian citrus psyllid [ACP (Diaphorina citri)] and young, healthy citrus (Citrus sp.) trees and prevent huanglongbing (HLB) disease development. The current study investigated the use of antipsyllid screen houses on plant growth and physiological parameters of young ‘Ray Ruby’ grapefruit (Citrus ×paradisi) trees. We tested two coverings [enclosed screen house and open-air (control)] and two planting systems (in-ground and container-grown), with four replications arranged in a split-plot experimental design. Trees grown inside screen houses developed larger canopy surface area, canopy surface area water use efficiency (CWUE), leaf area index (LAI) and LAI water use efficiency (LAIWUE) relative to trees grown in open-air plots (P < 0.01). Leaf water transpiration increased and leaf vapor pressure deficit (VPD) decreased in trees grown inside screen houses compared with trees grown in the open-air plots. CWUE was negatively related to leaf VPD (P < 0.01). Monthly leaf nitrogen concentration was consistently greater in container-grown trees in the open-air compared with trees grown in-ground and inside the screen houses. However, trees grown in-ground and inside the screen houses did not experience any severe leaf N deficiencies and were the largest trees, presenting the highest canopy surface area and LAI at the end of the study. The screen houses described here provided a better growing environment for in-ground grapefruit because the protective structures accelerated young tree growth compared with open-air plantings while protecting trees from HLB infection.

Full access

Rhuanito S. Ferrarezi, Alan L. Wright, Brian J. Boman, Arnold W. Schumann, Fred G. Gmitter, and Jude W. Grosser

Huanglongbing (HLB) disease is a threat to most citrus (Citrus sp.) producing areas and is associated with the bacterium Candidatus Liberibacter asiaticus. The disease is transmitted by the vector asian citrus psyllid [ACP (Diaphoria citri)]. Antipsyllid screen houses can potentially reduce and eliminate HLB development in young citrus plantings by excluding the insect vector. These structures are also anticipated to represent a new environmental platform to cultivate high-valued fresh citrus. The purpose of this investigation was to evaluate the effect of screen houses on excluding infective ACP from inoculating grapefruit (Citrus ×paradisi) trees and determine changes on environmental conditions caused by the screen cloth. We tested two coverings [enclosed screen house and open-air (control)] and two planting systems (in-ground and container-grown), with four replications arranged in a split-plot experimental design. Psyllid counting and HLB diagnosis were performed monthly, and the antipsyllid screen excluded the HLB vector from the houses. ACP and HLB-positive trees were found only at the open-air plots. Weather monitoring was performed every 30 minutes from 22 Feb. to 31 July 2014. Solar radiation accumulation averaged 6.7 W·m−2·minute−1 inside the screen houses and 8.6 W·m−2·minute−1 in the open-air. Air temperature was greater inside the screen houses whereas wind gusts were higher in the open-air. Reference evapotranspiration accumulation averaged 3.2 mm·day−1 inside the screen houses and 4.2 mm·day−1 in the open-air. There was no difference in cumulative rainfall between screen houses and open-air. The antipsyllid screen houses reduced solar radiation, maximum wind gust, and reference evapotranspiration (ETo). The environmental conditions inside the protective screen houses are suitable for grapefruit production.

Free access

J.W. Grosser, J. Jiang, F.A.A. Mourao-Fo, E.S. Louzada, K. Baergen, J.L. Chandler, and F.G. Gmitter Jr.

Seedlessness is an important breeding objective of most citrus scion improvement programs, but production of quality seedless triploid citrus via interploid crosses has historically been limited by the low quality of available tetraploid parents. Production of tetraploid hybrid parents from elite diploid scion cultivars via protoplast fusion is now a practical strategy, and numerous hybrids can be produced on a timely basis from a wide range of parents. Such hybrids can be used as pollen parents in interploid crosses to generate improved seedless triploid fresh fruit cultivars. Herein we report the production of 15 such hybrids from 17 different parents, including sweet orange [Citrus sinensis (L.) Osbeck], mandarin/tangerine (C. reticulata Blanco), grapefruit (C. paradisi Macf.), pummelo [C. grandis (L.) Osbeck], tangor (C. reticulata × C. sinensis), and tangelo (C. reticulata × C. paradisi) germplasm. All hybrids were confirmed by cytological and RAPD analyses, and have been budded to selected rootstocks to expedite flowering.

Free access

Chad E. Finn and John R. Clark