Search Results

You are looking at 11 - 15 of 15 items for

  • Author or Editor: Han Xu x
  • Refine by Access: All x
Clear All Modify Search
Full access

Zongchang Xu, Meng Wang, Jinhui Zhou, Han Liu, Chengsheng Zhang, and Yiqiang Li

Sword-leaf dogbane (Apocynum venetum) is a traditional Chinese herb with increasingly recognized potential to enhance health, but no study of stable reference genes in this herb has been reported. Based on a homologous cloning strategy, we have successfully cloned five candidate reference genes from sword-leaf dogbane: glyceraldehyde-3-phosphate dehydrogenase (AvGAPDH), beta tubulin (AvbTUB), polyubiquitin (AvUBQ), elongation factor 1-alpha (AvEF1α), and actin (AvACTIN). Three distinct algorithms, geNorm, NormFinder, and BestKeeper, were used to estimate the expression stability of candidate reference primer pairs. We found that AvACTIN-2 and AvACTIN-3 presented the highest stability of expression in different tissue samples, and AvGAPDH-2 was most stable under salinity stress. In addition, we illustrated the application of these new reference genes by assaying the expression levels of two hyperoside biosynthesis terminal enzyme genes, flavonoid 3′-hydroxylase (F3′H) and flavonol synthase (FLS), under salinity stress. Our study is the first to report stable expression of internal reference genes in sword-leaf dogbane in multiple experimental sample sets.

Open access

Dingmeng Hu, Jingwei Xu, Youji Han, Xingjian Dun, Lihui Wang, and Shengxiang Zhu

Free access

Chun-Yan Han, Gui-Fen Luo, Li Ji, Wei-Bang Sun, Xu-Yang Fu, and Cong-Ren Li

Free access

Chenping Zhou, Ruiting Chen, Yaqiang Sun, He Wang, Yi Wang, Ting Wu, Xinzhong Zhang, Xuefeng Xu, and Zhenhai Han

Bridge grafting is widely applied in trunk-wounded apple trees. In this study, we carried out semigirdling and ring girdling on the trunk of ‘Nagafu 2’/Malus baccata (L.) Borkh apple trees to simulate trunk injury. We then bridge grafted a M9 self-rooted rootstock on the injured trunks to study the effects of bridge grafting on flowering, fruit-set, tree vigor, and fruit characteristics in ‘Nagafu 2’ apple. The results showed that both semigirdling and ring girdling due to the large wounded area caused significant decrease in flowering, fruit-set, and tree vigor (estimated by measuring leaf area, leaf gas exchange, tree height, and shoot growth); in addition, ring girdling increased flesh and peel firmness. However, bridge grafting of M9 self-rooted rootstock on semigirdling and girdling apple trees resulted in partial recovery of tree vigor (leaf area and photosynthesis) and maintaining the reduction of vegetative growth, thereby increasing flowering, fruit-set, yield, fruit weight, and peel firmness.

Open access

Wanyu Xu, Chen Chen, Ningning Gou, Mengzhen Huang, Tana Wuyun, Gaopu Zhu, Han Zhao, Huimin Liu, and Lin Wang

The NAC (NAM, ATAF1/2, and CUC2) family is a group of plant-specific transcription factors that have vital roles in the growth and development of plants, and especially in fruit and kernel development. This study aimed to identify members of the NAC gene (PsNACs) family and investigate their functions in siberian apricot (Prunus sibirica). A total of 102 predicted PsNAC proteins (PsNACs) were divided into 14 clades and the genes were mapped to the eight chromosomes in siberian apricot. The PsNACs of the same clade had similar structures. A synteny analysis showed that the PsNACs had close relationships with the NAC genes of japanese apricot (Prunus mume). An expression pattern analysis of the PsNACs revealed many differences in various tissues and at different stages of fruit and kernel development. All eight PsNACs in clade XI have crucial roles in fruit and kernel development. Seven PsNACs (PsNACs 18, 64, 23, 33, 9, 4, and 50) in clades I, III, VI, VII, and XIII are related to fruit development. Eight PsNACs (PsNACs 6, 13, 46, 51, 41, 67, 37, and 59) in clades I, II, V, VIII, and XIII are involved in fruit ripening. Five PsNACs (PsNACs 6, 94, 41, 32, and 17) in clades I, IV, V, VII, and XI regulated the rapid growth of the kernel. Four PsNACs (PsNACs 50, 4, 67, and 84) in clades I, III, V, and XIII affected the hardening of the kernel. Four PsNACs (PsNACs 17, 82, 13, and 51) in clades II, XI, and IX acted on kernel maturation. We have characterized the NAC genes in siberian apricot during this study. Our results will provide resources for future research of the biological roles of PsNACs in fruit and kernel development in siberian apricot.