Search Results

You are looking at 11 - 20 of 37 items for

  • Author or Editor: Dermot P. Coyne x
  • Refine by Access: All x
Clear All Modify Search
Free access

H.M. Ariyarathne, Dermot P. Coyne, and Geunhwa Jung

Halo blight (HB), brown spot (BS), and rust incited by the bacterial pathogens Pseudomonas syringae pv. phaseolicola (Psp), Pseudomonas syringae pv. syringae (Pss) and the fungal pathogen Uromyces appendiculatus, respectively, are important diseases of common beans. The objectives were to construct a RAPD linkage map, and to locate HB and BS resistance genes and genes for some other traits. One-hundred-seventy RAPD markers were mapped in 78 RI lines of the cross BelNeb 1 and A 55. Eleven main and nine minor linkage groups were identified. MAPMAKER/QTL, interval mapping, was used to identify genomic regions involved in the genetic control of the traits. One region was found to control HB leaf reactions to strain HB16 while three regions controlled reactions to strain HB 83. These regions accounted for 22% and 18%, 17%, and 17% of phenotypic variation of resistance, respectively. Four putative QTLs were identified for resistance to BS, and accounted for 37%, 26%, 23%, and 19% of the phenotypic variation. Rust resistance was determined by a single major gene to both rust strains US85NP 5-1 and D82vc74fh. However, linked markers were not identified. The V gene controlling flower and stem color was tightly linked with the Operon marker O10.620.

Free access

James S. Beaver, James R. Steadman, and Dermot P. Coyne

Field reaction of 25 red mottled bean (Phaseolus vulgaris L.) genotypes to common bacterial blight [Xanthomonas campestris pv. phaseoli (Smith) Dye] was evaluated in Puerto Rico over 2 years. The average disease severity (percent leaf area with symptoms) was similar over years. The determinate red mottled genotypes had almost twice as much disease as indeterminate genotypes. Eight of the indeterminate genotypes had significantly less disease than the mean of the field experiments. These genotypes may serve as useful sources of resistance to common bacterial blight. The size of the chlorotic zone around necrotic lesions varied between growing seasons, showing that environment can influence the expression of common bacterial blight symptoms.

Free access

Soon O. Park, Dermot P. Coyne, and James R. Steadman

Bean rust, caused by Uromyces appendiculatus, is an important disease of common bean (Phaseolus vulgaris L.). The objective was to identify RAPD markers linked to the gene (Ur-6) for specific resistance to rust race 51 using bulked segregant analysis in an F2 segregating population from the common bean cross pinto `Olathe' (resistant to rust) × great northern Nebraska #1 selection 27 (susceptible to rust). A single dominant gene controlling specific resistance to race 51 was hypothesized based on F2 segregation, and then was confirmed in the F3 generation. A good fit to a 3:1 ratio for band presence to band absence for each of three markers was observed in 100 F2 plants. Three RAPD markers were detected in a coupling phase linkage with the Ur-6 gene. Coupling-phase RAPD marker OAB14.600 was the most closely linked to the Ur-6 gene at a distance of 3.5 cM among these markers. No RAPD markers were identified in a repulsion phase linkage with the Ur-6 gene. The RAPD markers linked to the gene for specific rust resistance of Middle American origin detected here, along with other independent rust resistance genes from other germplasm, could be utilized to pyramid multiple genes into a bean cultivar for more durable rust resistance.

Free access

Soon O. Park, Dermot P. Coyne, Atilla Dursun, and Geunhwa Jung

Common bacterial blight (CBB), incited by Xanthomonas campestris pv. phaseoli (Xcp), is an important seed-transmitted disease of common bean (Phaseolus vulgaris L.). Tepary bean (Phaseolus acutifolius A. Gray) has high resistance to Xcp. The objective of this study was to identify RAPD markers linked to genes controlling resistance to three isolates of Xcp using bulked segregant analysis in an F2 population from the tepary bean cross CIAT-G40005 (resistant to Xcp) × Nebr.#4B (susceptible to Xcp). Twelve RAPD markers were mapped in a coupling-phase linkage with three genes for resistance to Xcp. The linkage group spanned a distance of 19.2 cM. A marker L7750 was linked to the genes for resistance to Xcp strains EK-11 and LB-2 at 8.4 cM and 2.4 cM, respectively. Markers U10400 and Y14600 were detected as flanking markers for the resistance gene to Xcp strain SC-4A at 2.4 cM and 7.2 cM, respectively. The symbols Xcp-1, Xcp-2, and Xcp-3 were assigned for the genes for resistance to Xcp strains EK-11, LB-2, and SC-4A, respectively. RAPD markers linked to the genes for resistance to Xcp could be used for transferring all of the resistance genes from P. acutifolius to a susceptible P. vulgaris cultivar.

Free access

Mohamed F. Mohamed, Paul E. Read, and Dermot P. Coyne

A new in vitro protocol was developed for multiple bud induction and plant regeneration from embryonic axis explants of four common bean (Phaseolus vulgaris L.) and two tepary bean (P. acutifolius A. Gray) lines. The explants were prepared from two embryo sizes, 3 to 4 mm and 5 to 7 mm, corresponding to pods collected after 15 and 25 days from flowering, respectively. The embryonic axis was cultured on Gamborg's B5 basal medium with 0, 5, 10, or 20 μm BA in combinations with 0, 1, or 2 μm NAA. The cultures were maintained at 24 to 25C under continuous light or incubated in darkness for 2 weeks followed by continuous light before transfer to the secondary B5 medium (0 or 2 μm BA or 2 μm BA plus 4 μm GA3). Adventitious roots or a single shoot with roots formed on the explants cultured on media without plant growth regulators. Multiple buds were induced on all BA media, but more were produced with 5 or 10 μm for most lines. Dark incubation greatly enhanced multiple bud initiation. Shoot buds were not produced on media containing NAA alone or in combinations with BA. On the secondary medium, six to eight shoots per explant for common bean and up to 20 shoots per explant from tepary bean were observed after 3 weeks. Mature, fertile plants were produced from these shoots. Chemical names used: benzyladenine (BA); 1-naphthaleneacetic acid (NAA); gibberellic acid (GA3).

Free access

Mohamed F. Mohamed, Dermot P. Coyne, and Paul E. Read

Plant regeneration has been achieved in two common bean lines from pedicel-derived callus that was separated from the explant and maintained through successive subcultures. Callus was induced either on B5 or MS medium containing 2% sucrose and enriched with 0.5 or 1.0 mg thidiaznron/liter alone or plus various concentrations of indoleacetic acid. The presence of 0.07 or 0.14 g ascorbic acid/liter in the maintenance media prolonged the maintenance time. Up to 40 shoot primordia were observed in 4-week-old cultures obtained from 40 to 50 mg callus tissues on shoot-induction medium containing 1-mg benzyladenine/liter. These shoot primordia developed two to five excisable shoots (>0.5 cm) on medium with 0.1-mg BA/liter. A histological study confirmed the organogenic nature of regeneration from the callus tissues. The R2 line from a selected variant plant showed stable expression of increased plant height and earlier maturity. Chemical names used: ascorbic acid, N- (phenylmethyl)-1H-pnrin-6-amine [benzyl-adenine, BA], 1H-indole-3-acetic acid (IAA), N- phenyl-N'-1,2,3-thiadiazol-5-ylurea [thidiazuron, TDZ].

Free access

Mohamed F. Mohamed, Paul E. Read, and Dermot P. Coyne

Dry seeds from two lines of common bean (Phaseolus vulgaris L.) and one cultivar of faba bean (Vicia faba L.) were germinated on Murashige and Skoog (MS) medium containing B vitamins, 30 g sucrose/liter, and either 2.5, 5.0, or 7.5 μm benzyladenine (BA). Axenic seed cultures were grown at 22 to 24C in darkness and under continuous light from cool-white fluorescent tubes (40 μmol·m-2·s-1). Explant tissues were prepared from cotyledonary nodes (CN) and primary nodes (PN) of 14-day-old seedlings. Explants were cultured on corresponding seedling growth medium and maintained under continuous cool-white light (40 μmol·m-2·s-1). The percentages of CN and PN (in one line of common bean) explants that regenerated shoots and the number of shoots per explant (in all germplasm) were highest when nodal tissues were prepared from seedlings germinated in darkness. These responses were optimal on medium containing 5 μm BA during seedling growth and subsequent culture of explants. The number of shoots per explant was two to five times higher on explants cultured on medium with 0.25 to 1.0 μm forchlorfenuron (CPPU) or thidiazuron (TDZ) than on medium with 5 μm BA. Higher (2.5 and 5 μm) CPPU and TDZ concentrations inhibited shoot elongation and stimulated callus production. Histological analyses indicated that adventitious meristems formed 6 to 8 days after explant culture. Progenies from regenerated plants appeared similar to plants raised from the original seed stocks. Chemical names used: N- (phenylmethyl) -1 H- purin-6-amine (benzyladenine, BA); N- (2-chloro-4-pyridyl)-N'- phenylurea (forchlorfenuron, CPPU); N- phenyl -N' -1,2,3-thiadiazol-5-ylurea (thidiazuron, TDZ).

Free access

Haytham Z. Zaiter, Dermot P. Coyne, Ralph B. Clark, and James R. Steadman

Nine bean cultivars/lines (Phaseolus vulgaris L.) were grown in three soils/rooting media at pH values of 7.9, 6.5, and 5.8 in greenhouse, growth chamber, and field experiments to evaluate the leaf reaction of the plants to a Nebraska bean rust [Uromyces appendiculatus (Pers.) Unger var. appendiculatus] isolate US85-NP-10-1. Significant differences were observed for rust pustule diameter between cultivars/lines grown in the three growth media. Plants grown in the medium at pH 5.8 showed significantly larger rust pustule diameters than those of plants grown at pH 6.5 or 7.9. A significant interaction occurred between growth medium and cultivars/lines for the rust reaction. Concentrations of Cl and Mn in leaves were positively correlated with rust pustule diameter. In contrast, concentration of K in leaves was negatively correlated with rust pustule diameter. Plant breeders attempting to improve beans for rust resistance must consider the growth medium pH in evaluating intensity and severity of rust symptoms on leaves.

Free access

Haytham Z. Zaiter, Dermot P. Coyne, Ralph B. Clark, and James R. Steadman

Nine bean cultivars/lines were grown in a Tripp sandy-clay loam (high pH), a Sharpsburg silty clay loam (neutral pH), and a potting mix (equal volume of sand, soil [Sharpsburg silty clay loam], vermiculite and moss pest) (low pH) in greenhouse (one experiment), growth chamber (two experiments), and field (two experiments) in Lincoln, NE, in order to evaluate the leaf reaction of the plants to a Nebraska rust (Uromyces appendiculatus var. appendiculatus) isolate US85-NP-10-1. A factorial arrangement of soil media and cultivars/lines in a randomized complete block design was used in the greenhouse and growth chamber experiments, while a split-plot design (soil media as main plots and cultivars/lines as sub-plots) was used in the field experiments. Significant differences were observed for rust pustule size of cultivars/lines grown on the three different soil media. Plants grown on potting mix medium showed significant Increases in rust pustule size compared with Tripp (high pH) or Sharpsburg silty clay loam soils (neutral pH). A significant interaction occurred between soil media and cultivars/lines for the rust reaction. A positive correlation (R= +0.5) was observed between the increased concentration of C1 and Mn,, and a negative correlation for lower K (R+ -0.44) and soil pH in the potting mix and larger rust pustule size of leaves. These results have implications for plant breeders and pathologists involved in evaluating bean progenies and lines for rust resistance.

Free access

Haytham Z. Zaiter, Dermot P. Coyne, Ralph B. Clark, and James R. Steadman

Nine bean cultivars/lines were grown in a Tripp sandy-clay loam (high pH), a Sharpsburg silty clay loam (neutral pH), and a potting mix (equal volume of sand, soil [Sharpsburg silty clay loam], vermiculite and moss pest) (low pH) in greenhouse (one experiment), growth chamber (two experiments), and field (two experiments) in Lincoln, NE, in order to evaluate the leaf reaction of the plants to a Nebraska rust (Uromyces appendiculatus var. appendiculatus) isolate US85-NP-10-1. A factorial arrangement of soil media and cultivars/lines in a randomized complete block design was used in the greenhouse and growth chamber experiments, while a split-plot design (soil media as main plots and cultivars/lines as sub-plots) was used in the field experiments. Significant differences were observed for rust pustule size of cultivars/lines grown on the three different soil media. Plants grown on potting mix medium showed significant Increases in rust pustule size compared with Tripp (high pH) or Sharpsburg silty clay loam soils (neutral pH). A significant interaction occurred between soil media and cultivars/lines for the rust reaction. A positive correlation (R= +0.5) was observed between the increased concentration of C1 and Mn,, and a negative correlation for lower K (R+ -0.44) and soil pH in the potting mix and larger rust pustule size of leaves. These results have implications for plant breeders and pathologists involved in evaluating bean progenies and lines for rust resistance.