Search Results

You are looking at 11 - 16 of 16 items for

  • Author or Editor: David Beattie x
  • Refine by Access: All x
Clear All Modify Search
Full access

Christine E. Thuring, Robert D. Berghage, and David J. Beattie

Plants suitable for extensive green roofs must tolerate extreme rooftop conditions, and the substrates in which they grow must fulfill horticultural and structural requirements. Deeper substrates may retain more water for plants during dry periods, but will also weigh more, especially when near saturation. A study in central Pennsylvania was conducted to evaluate the influence of substrate type and depth on establishment of five green roof plants. Two stonecrops [white stonecrop (Sedum album) and tasteless stonecrop (Sedum sexangulare)], one ice plant (Delosperma nubigenum), and two herbaceous perennials [maiden pink (Dianthus deltoides) and saxifrage pink (Petrorhagia saxifraga)] were planted in three depths (30, 60, and 120 mm) of two commercially available green roof substrates (expanded shale and expanded clay). Study flats inside a plasticulture tunnel received three drought treatments (no drought, 2 weeks early drought, and 2 weeks late drought). The two stonecrops performed well under most conditions, although tasteless stonecrop was stunted by early drought. Ice plant only grew well when provided with water. When subjected to any drought, the herbaceous perennials had the fewest survivors in the expanded shale. Saxifrage pink flowered profusely wherever it survived. The study plants were most affected by substrate depth, except for maiden pink, which responded solely to drought. When subjected to early drought conditions, the herbaceous perennials did not survive in 30 mm of either substrate, or in 60 mm of expanded shale. Although the stonecrops performed well in 60 mm of substrate when subjected to drought, their performance was superior in the expanded clay compared with shale.

Full access

Allyson M. Blodgett, David J. Beattie, and John W. White

Impatiens wallerana `Accent Red' were grown in a peat : perlite : vermiculite (PPV) or bark : peat : perlite (BPP) medium amended with SuperSorb-C (SS) or Soil Moist (SM) hydrophilic polymer and/or AquaGro-G (AG) wetting agent. In PPV or BPP, neither SS nor SM significantly increased shoot dry weight. In PPV, quality ratings were higher for plants grown in nonamended or SS- or SM- amended medium than for plants in AG-amended medium. In BPP, quality ratings were highest for plants grown in nonamended, AG-, or SM + AG-treated medium. Number of days from final irrigation to permanent wilting point (PWP) was greater in AG, SS + AG, or SM + AG treatments in PPV than in control, SS, or SM treatments, due to smaller plants in AG-amended media. In both media, root dry weight was not significantly greater with the use of either hydrophilic polymer or wetting agent. However, in PPV, AG suppressed root growth compared to the control.

Full access

Wendy Britton, E.J. Holcomb, and David J. Beattie

Four rates of two slow-release fertilizers were tested for optimum growth of five hosta cultivars: Hosta sieboldiana `Elegans', Hosta plantaginea `Aphrodite', Hosta `Jade Scepter', Hosta `Hadspen Blue', and Hosta `Francee'. Tissue-cultured hostas from 2.5-cm plugs were planted in 6-inch (15-cm) pots filled with a commercial soilless medium, and the slow-release fertilizer was dibbled into the medium at 0, 3, 6, or 12 g/pot. The plants were maintained for 4 months. Root and shoot fresh and dry weights were recorded at the end of the experiment. In addition, foliar nutrient analysis was conducted on `Aphrodite', `Francee', and `Jade Sceptor'. Overall, hostas grew best when the medium was amended with 3 g of either Osmocote 14N-6P-11.5K or Sierrablen 17N-6P-12K slow-release fertilizer.

Free access

Dan T. Stearns, David J. Beattie, Charles W. Heuser, and Perry M. Morgan

In an elective course titled “Be A Master Student”, freshmen in The Pennsylvania State Univ.'s College of Agricultural Sciences were introduced to subjects ranging from university policies and procedures to skill enhancement in note-taking, test-taking, and time management techniques. A broad knowledge of agricultural sciences at local, state, national, and international levels was developed with the goal to relate agriculture to individual and societal needs. Mentoring relationships between students and faculty developed, not only with course instructors, but also with other faculty through required interviews and one-on-one discussions. Two volunteer faculty instructors taught 20 students per section. The number of sections has increased from four in 1990 to 13 in 1994. More than 70% of incoming freshmen opted to schedule the course in 1994. Student surveys indicated that >90% of those who enrolled would recommend the class to a close friend. Performance tracking shows that studentswho enrolled in the class maintained higher grade point averages than students who did not enroll. A higher rate of retention also has been documented for students who complete “Be A Master Student”!

Free access

David G. Hall, Tim R. Gottwald, Ed Stover, and G. Andrew C. Beattie

Asiatic huanglongbing (HLB) is a devastating disease of citrus associated in North America with the bacterium ‘Candidatus Liberibacter asiaticus’ (LAS) vectored by the Asian citrus psyllid (ACP), Diaphorina citri Kuwayama. ACP management is considered a vital component of a program aimed at reducing the incidence and spread of HLB. Considerable research has been published comparing the efficacy of different insecticides for ACP control as well as on seasonal strategies for applying ACP insecticides. However, published information was largely lacking for even the most intense insecticide programs on their effectiveness for keeping HLB out of a new citrus planting in Florida citrus. We therefore conducted two replicated (individual plots 0.2 to 0.4 ha in size) experiments on protecting young citrus from HLB using different ACP management programs. An intensive insecticide program was evaluated in each experiment: eight annual calendar applications of traditional insecticides (hereafter referred to as the “complete” program). In one experiment, citrus was either planted alone and subjected to the complete program or citrus was interplanted with orange jasmine, Murraya exotica L. (a favored ACP host plant) and subjected to a reduced insecticide program (four calendar sprays of traditional insecticides). There was one set of plots in which both jasmine and citrus were treated with insecticides and one set in which jasmine was not treated at all. In the second experiment, citrus was either subjected to the complete program or to one of two other programs: a reduced insecticide program consisting of five calendar applications of traditional insecticides or a mineral oil program (oil applications every 3 weeks plus one dormant insecticide spray). The results of the two experiments were similar. Relatively good ACP control was achieved under each ACP management program during the first year but, as the experiments progressed and trees increased in size, ACP outbreaks occurred regardless of the psyllid management program. Little HLB developed under any ACP management program during the first year, but thereafter HLB increased and large percentages of the trees in each experiment became LAS-infected in less than two to three years. The combined results of the experiments indicated that up to eight monthly pesticide treatments per year applied on a calendar schedule were ineffective for preventing young citrus from becoming diseased. Of important significance is that the orchard within which the two experiments were conducted was subjected to a minimal psyllid management program and contained many older trees known to be infected by the HLB pathogen, a challenging situation for getting young trees into production without contracting the disease. Thus, the ACP management programs we evaluated might have been more effective if ACP in the surrounding areas had been more aggressively controlled and diseased trees in the surrounding areas removed to reduce inoculum loads. Also, the programs might have been more effective for slowing the spread of HLB if our research plots had been larger.

Free access

Allyson M. Blodgett, David J. Beattie, John W. White, and George C. Elliott

A plantless system using subirrigation was developed to measure water absorption and loss in soilless media amended with hydrophilic polymers, a wetting agent, or combinations of these amendments. Peat-perlite-vermiculite and bark-peat-perlite controls achieved 67% and 52% of container capacity, respectively, after 20 daily irrigation cycles. Maximum water content of amended media was 78% of container capacity. Adding only a hydrophilic polymer did not increase total water content significantly. Adding a wetting agent increased water absorption in both media. However, when hydrophilic polymer and wetting agent were present, the medium absorbed more water than with wetting agent alone. More extractable water was removed from media containing wetting agent. Water loss rate by evaporation was not affected significantly by medium, hydrophilic polymer, wetting agent, or any combination of these variables.