Search Results

You are looking at 11 - 16 of 16 items for

  • Author or Editor: Christian A. Wyenandt x
  • Refine by Access: All x
Clear All Modify Search
Free access

Christian A. Wyenandt, James E. Simon, Margaret T. McGrath, and Daniel L. Ward

Downy mildew, caused by Peronospora belbahrii, is a new disease of basil (Ocimum spp.) in the United States. In 2009, different basil species, cultivars, and advanced breeding lines of sweet basil (30 in total) were evaluated for susceptibility to basil downy mildew in field trials in southern and northern New Jersey. Popular commercial sweet basil cultivars such as Martina, Nufar, and Poppy Joe were among the most susceptible to downy mildew. Symptoms and sporulation of P. belhahrii on Ocimum ×citriodorum and O. americanum cultivars were present but far less than on most O. basilicum cultivars evaluated. The cultivars Spice, Blue Spice, and Blue Spice Fil were the least susceptible to basil downy mildew with no visible symptoms. Similar results were observed in both field trials. This is the first report of potential resistance in Ocimum spp. to basil downy mildew. Observations from this study show that the development of resistant cultivars may be possible. Selection criteria such as foliar morphology, plant architecture as well as the presence of secondary metabolites are being examined as potential traits for developing downy mildew resistant basil cultivars.

Open access

Joseph R. Heckman, Uta Krogmann, and Christian A. Wyenandt

Every autumn an abundance of leaves from various species of shade trees [e.g., oak (Quercus sp.), maple (Acer sp.)] are collected from urban landscapes. In 1988, shade tree leaves were banned from landfills and combustion facilities in New Jersey because it was an unsustainable practice. Composting and mulching leaves and using them as a resource was proposed. The purpose of this review is to summarize studies of mulching and amending soils with shade tree leaves and their potential to benefit agricultural production. Research sponsored by New Jersey Agricultural Experiment Station on soils and crops found that land application of shade tree leaves was beneficial for building soil organic matter content, protecting against erosion, and controlling weeds when used as a mulch. In general, crop yields and quality were improved with leaf mulch. Collected shade tree leaves on average have a relatively high carbon-to-nitrogen (N) ratio and the potential to cause a temporary deficiency of soil N availability. However, with good agronomic practices and well-timed N fertilization, crops perform well after shade tree leaves have been applied without increasing the recommended N fertilizer application rate.

Full access

Christian A. Wyenandt, Lisa R. Maimone, Kathryn Homa, Angela M. Madeiras, Robert L. Wick, and James E. Simon

Different basils (Ocimum sp.) and cultivars (28 in 2009 and 32 in 2010) were evaluated for susceptibility to basil downy mildew (Peronospora belbahrii) at the Rutgers Agricultural Research and Extension Center near Bridgeton in southern New Jersey. At the end of each growing season, seed was collected from individual plants and stored for potential downy mildew pathogen detection using real-time polymerase chain reaction (PCR) analysis. Most of the basil cultivars and breeding lines were showing symptoms of basil downy mildew infection at the time of seed collection before the first frost near the end of the production season. Symptoms of basil downy mildew were present on 25 of the 28 (89%) basil lines evaluated in 2009 and 26 of 32 (81%) basil lines tested in 2010 at the time of seed harvest, with sporulation evident on the abaxial surface of infected leaves. Real-time PCR analysis of seed collected from various infected plants detected P. belbahrii on seed of 14 of 25 (56%) basil lines tested in 2009 and 8 of 32 (25%) tested in 2010. Importantly, P. belbahrii was not only detected on seed of sweet basil (Ocimum basilicum) phenotypes but also on seed of ‘Spice’ basil (Ocimum americanum) in 2009 and ‘Sweet Dani Lemon Basil’ basil (Ocimum citriodorum), ‘Holy Red and Green’ basil [Ocimum tenuiflorum (form. sanctum)], ‘Lime’ basil (O. americanum), and again on ‘Spice’ basil in 2010 where no symptoms (i.e., no chlorosis or sporulation) were present on the leaves when seed were collected. This work demonstrates that basil seed, regardless of basil species and whether symptoms are visible on foliage of the basil plant or the plant is immune or resistant to downy mildew, can test positive for the presence of P. belbahrii using a real-time PCR assay following exposure of plants to the pathogen during the natural development of downy mildew under field conditions.

Open access

Yuan Li, Arend-Jan Both, Christian A. Wyenandt, Edward F. Durner, and Joseph R. Heckman

Although not considered an essential nutrient, silicon (Si) can be beneficial to plants. Si accumulator species such as pumpkin (Cucurbita pepo var. pepo) can absorb Si from soil. Si uptake may reduce plant susceptibility to fungal diseases such as cucurbit powdery mildew (Podosphaera xanthii and Erysiphe cichoracearum). We previously reported that wollastonite, an Organic Materials Reviews Institute–approved natural mineral, can increase soil Si level, increase soil pH, provide pumpkin plants with Si, and increase their resistance to powdery mildew. In this study, we examined the optimum application rate of wollastonite for pumpkins grown in pots and exposed to cucurbit powdery mildew. We confirmed that wollastonite has liming capabilities similar to regular limestone. Regardless of the application rates, wollastonite and limestone showed similar effects on soil chemistry and plant mineral composition. Pumpkin plants grown with the lower doses of wollastonite amendments (3.13 and 6.25 tons/acre) had the greatest tissue Si concentrations and demonstrated the greatest disease resistance. We conclude that wollastonite is a useful material for organic cucurbit (Cucurbitaceae) growers who want to increase soil pH and improve plant resistance to powdery mildew at the same time. Applying wollastonite at rates beyond the amount required to achieve a desirable soil pH for pumpkin production did not further increase Si uptake, nor did it further suppress powdery mildew development.

Free access

Jorge M. Fonseca, Hyun-Jin Kim, Wesley L. Kline, Christian A. Wyenandt, Murshidul Hoque, Husein Ajwa, and Ned French

The effect of preharvest application of a newly developed second-generation harpin product (2G-Harpin) on shelf life of fresh-cut lettuce (Lactuca sativa) was investigated. The lettuce plants were grown in three locations in the United States: Watsonville, CA, Cedarville, NJ, and Yuma, AZ, and treated 5 days before harvest at 140, 280, and 420 g·ha−1 (30, 60, and 90 mg·L−1). Lettuce processed and bagged were stored at 1 to 3 °C and evaluated for quality for 20 days. Lettuce from California treated with 2G-Harpin at 280 to 420 g·ha−1 consistently showed better visual quality and lower microbial population than the control. Overall results in New Jersey showed no major differences among treatments. In Arizona, microbial population was lower and visual quality was higher in lettuce treated at 280 and 420 g·ha−1 during part of the storage period. In further experimentation, we examined the phenolic content of lettuce harvested 1 and 7 days after treatment with 2G-Harpin. The results showed that phenolic content was higher in all treated lettuce than in the control lettuce after 24 h. Six days later, the levels fell back to the initial stage. Antioxidants capacity increased by 40% in head leaves when plants were treated with 280 and 420 g·ha−1 2G-Harpin, but no change was observed in outer leaves. Overall, it was revealed that a field application of 2G-Harpin can improve quality of fresh-cut lettuce under environmental conditions that need to be determined. Our results with phenolic content and antioxidant activity suggested that improvement in quality is probably the result of alteration of metabolites' composition and demonstrated that increased phenolics do not correlate with lower quality of fresh-cut products.

Open access

Kathryn Homa, William P. Barney, William P. Davis, Daniel Guerrero, Mary J. Berger, Jose L. Lopez, Christian A. Wyenandt, and James E. Simon

Fusarium wilt of basil (FOB), caused by Fusarium oxysporum f. sp. basilici, is an economically damaging disease of field- and greenhouse-grown sweet basil. Growers have observed a resurgence of FOB and susceptibility in FOB-resistant cultivars. Because currently available chemical, biological, and cultural control methods are costly, unsustainable, ineffective, or challenging to implement, new strategies of FOB control are needed. Cold plasma is becoming an increasingly important experimental technology in the food and agricultural industry for pathogen decontamination. To understand the effect of cold plasma treatment on FOB incidence and severity, experiments were conducted by treating FOB mycelium, inoculated sweet basil seedlings, and seeds with various experimental cold plasma treatment devices, all using helium as a feed gas. Initial results indicated that while the cold plasma jet treatment did not result in a significant reduction in mean mycelial growth rate or virulence of the pathogen, direct cold plasma jet treatments on seedlings, as well as a cold plasma dielectric barrier discharge treatment on seeds, did exhibit varying efficacies against FOB. Control of FOB appeared to be strongly dependent on the exposure time to cold plasma. These findings can aid in the standardization of a cold plasma treatment for the commercial basil seed and transplant industry.