Search Results

You are looking at 11 - 18 of 18 items for

  • Author or Editor: Bruce L. Dunn x
  • Refine by Access: All x
Clear All Modify Search
Open access

Bruce L. Dunn, Carla Goad, and Lynn Brandenberger

Uniconazole is approved for use as a chemical option on tomato (Solanum lycopersicum) for height control, but research is limited. In this study, 12 tomato cultivars were chosen with three cultivars each of indeterminate, determinate, heirloom, and container types. Plants were sprayed with a one-time application of 0, 2.5, 5, 7.5, or 10 mg⋅L–1 of uniconazole during the two- to four-leaf stage to evaluate height control. Results indicated no significant difference between concentrations for plant height, stem caliper, and plant dry weight. The greatest soil plant analysis development (SPAD) values were observed with the 10-mg⋅L–1 treatment. Flower response in ‘Brandywine’ to a single application of 0, 2.5, or 5 mg⋅L–1 of uniconazole demonstrated a greater number of flowers per plant at 5 mg⋅L–1, whereas no significant difference was shown for the number of flower clusters or the number of flowers per cluster at other treatment levels. Using 2.5 mg⋅L–1 uniconazole was effective for reducing plant height across all cultivars of greenhouse-grown tomato seedlings compared with the control, whereas addition of 5 mg⋅L–1 was shown to increase the number of flowers in the heirloom cultivar Brandywine.

Free access

Mingying Xiang, Justin Q. Moss, Dennis L. Martin, Kemin Su, Bruce L. Dunn, and Yanqi Wu

Bermudagrass (Cynodon sp.) is a highly productive, warm-season, perennial grass that has been grown in the United States for turfgrass, forage, pasture, rangeland, and roadside use. At the same time, many bermudagrass production and reclamation sites across the United States are affected by soil salinity issues. Therefore, identifying bermudagrass with improved salinity tolerance is important for successfully producing bermudagrass and for reclaiming salt-affected sites with saline irrigated water. In this project, the relative salinity tolerance of seven clonal-type bermudagrass was determined, including industry standards and an Oklahoma State University (OSU) experimental line. The experiment was conducted under a controlled environment with six replications of each treatment. Seven bermudagrass entries were exposed to four salinity levels (1.5, 15, 30, and 45 dS·m−1) consecutively via subirrigation systems. The relative salinity tolerance among entries was determined by normalized difference vegetation index (NDVI), digital image analysis (DIA), leaf firing (LF), turf quality (TQ), shoot dry weight (SW), visual rating (VR), and dark green color index (DGCI). Results indicated that there were variable responses to salinity stress among the entries studied. As salinity levels of the irrigation water increased, all evaluation criterion decreased, except LF. All entries had acceptable TQ when exposed to 15 dS·m−1. When exposed to 30 dS·m−1, experimental entry OKC1302 had less LF than all other entries except ‘Tifway’, while ‘Midlawn’ showed more LF than all the entries. Leaf firing ranged from 1.0 to 2.7 at 45 dS·m−1, where ‘Tifway’ outperformed all other entries. At 45 dS·m−1, the live green cover as measured using DIA ranged from 3.07% to 24.72%. The parameters LF, TQ, NDVI, DGCI, SW, and DIA were all highly correlated with one another, indicating their usefulness as relative salinity tolerance measurements.

Open access

Godwin Shokoya, Charles Fontanier, Dennis L. Martin, and Bruce L. Dunn

Consumers desire low-input turfgrasses that have tolerance to both shade and drought stresses. Several sedges (Carex sp.) and nimblewill (Muhlenbergia schreberi) are native plants prevalent in dry woodland ecosystems in Oklahoma, USA, and may have potential as alternatives to conventional species in dry shaded turfgrass systems. To evaluate selected species for this purpose, a multilocation field trial was conducted in Stillwater and Perkins, OK. Four sedges [gray sedge (Carex amphibola), Leavenworth’s sedge (Carex leavenworthii), ‘Little Midge’ palm sedge (Carex muskingumensis), and Texas sedge (Carex texensis)] and nimblewill were evaluated as alternative turfs for the study. Alternative turfs were compared against two conventional turfgrasses [‘El Toro’ Japanese lawngrass (Zoysia japonica) and ‘Riley’s Super Sport’ bermudagrass (Cynodon dactylon)]. The conventional turfgrasses outperformed each sedge and nimblewill in coverage and turf quality. Leavenworth’s sedge, gray sedge, and Texas sedge persisted well but did not spread quickly enough to achieve a dense canopy by the end of the 2-year trial. In contrast, nimblewill established quickly but declined in coverage over time. This study demonstrated some sedges and nimblewill can be established and maintained as a low-input turf in dry shade, but development of unique management practices is still required for acceptable performance.

Free access

Scott E. Renfro, Brent M. Burkett, Bruce L. Dunn, and Jon T. Lindstrom

Free access

Yun-wen Wang, Bruce L. Dunn, Daryl B. Arnall, and Pei-sheng Mao

This research was conducted to investigate the potentials of normalized difference vegetation index (NDVI), a Soil-Plant Analyses Development (SPAD) chlorophyll meter, and leaf nitrogen (N) concentration [% dry matter (DM)] for rapid determination of N status in potted geraniums (Pelargonium ×hortorum). Two F1 cultivars were chosen to represent a dark-green leaf cultivar, Horizon Deep Red, and a light-green leaf cultivar, Horizon Tangerine, and were grown in a soilless culture system. All standard 6-inch (15.24-cm) pots filled with a medium received an initial top-dress application of 5 g controlled-release fertilizer (15N–9P–12K), then plants were supplemented with additional N in the form of urea at 0, 50, 100, or 200 mg·L−1 N every few days to produce plants ranging from N-deficient to N-sufficient. The NDVI readings of individual plants from a NDVI pocket sensor developed by Oklahoma State University were collected weekly until the flowering stage. Data on flower traits, including number of pedicels (NOP), number of full umbels per pot (NOFU), total number of flowers per pot (TNF), number of flowers per pedicel (NOF), and inflorescences diameter (IFD), were collected 3 months after initial fertilizer treatment. After measuring flower traits, pedicels were removed from each pot, and SPAD value, NDVI, and leaf N concentration (g·kg−1 DM) were measured simultaneously. Cultivar and N rate significantly affected all but two flower and one N status parameters studied. The coefficient of determination R 2 showed that NOP, NOFU, and TNF traits were more related to the N rates and the status parameters studied for ‘Horizon Tangerine’ than for ‘Horizon Deep Red’. For the latter cultivar, NOP and TNF traits were highly related to NDVI and SPAD values than N rates and leaf N content parameters. Correlation analysis indicated that the NDVI readings (R 2 = 0.848 and 0.917) and SPAD values (R 2 = 0.861 and 0.950) were significantly related to leaf N content (g·kg−1 DM) between cultivars. However, sensitivity of the NDVI and chlorophyll values to N application rate in geranium was slightly less than leaf N content. Strong correlations (R 2 = 0.974 and 0.979, respectively) between NDVI and SPAD values were found within cultivars. The results demonstrated NDVI and SPAD values can be used to estimate N status in geranium. Because the pocket NDVI sensor will be cheaper than the SPAD unit, it has an advantage in determining N content in potted ornamentals.

Open access

Abby Pace, Bruce L. Dunn, Charles Fontanier, Carla Goad, and Hardeep Singh

Success of the floral industry lies in strengthening the fresh flower market with value-added products. An experiment was conducted to quantify luminescence of cut-flower white carnations after exposure to two fluorescent products (dye from a yellow highlighter or glow-in-the-dark spray paint). Single stems were placed in bud vases that were filled with 240 mL deionized water and 2 g floral preservative. Highlighter treatments were applied to the vase as either one drop, three drops, or half of the dye reservoir (half stick). Paint treatments were applied at 2-, 4-, or 6-second durations to the flowers. Combination treatments were applied as three drops of highlighter dye plus either 2, 4, or 6 seconds of paint application. Treatments were compared against each other and a nontreated control. There were five repetitions of three stems per treatment arranged in a completely randomized design. Measurements were taken daily on stem fresh weight, flower diameter, quality rating, flower maximum brightness, flower mean brightness, relative stem fresh weight percentage, overall solution absorption rate percentage, and daily solution absorption rate. Stem fresh weight, relative stem fresh weight percentage, flower diameter, and overall solution absorption rate were greatest on day 4. Flower maximum brightness without ultraviolet (UV) light was greatest 2 days after treatment (DAT), but still produced a detectable glow through 8 DAT. Among treatments before UV charge, the 6-second paint duration provided the greatest flower maximum brightness value. The half-stick highlighter treatment had the greatest vase mean brightness. All paint treatments reduced flower quality. For each treated flower, the UV charge increased the brightness values, which ranged from 53% to 206% greater than before the UV charge. White carnations can luminesce with spray applications of glow-in-the-dark spray paint or through the stem absorption method using yellow highlighter dye, with the latter being less detrimental to vase life but requiring a UV light source to glow.

Full access

Courtney D. DeKalb, Brian A. Kahn, Bruce L. Dunn, Mark E. Payton, and Allen V. Barker

Four experiments were conducted under greenhouse conditions in Oklahoma. Pelleted ‘Genovese’ basil (Ocimum basilicum) seeds were sown in polystyrene flats with six different blends of a peat-lite mix (PL0) and yard waste compost [YWC (this batch designated C0)] in 2012 for the first two experiments. The proportions by volume of PL0:C0 included 100%:0%, 80%:20%, 60%:40%, 40%:60%, 20%:80%, and 0%:100%. Seedling establishment was unaffected consistently, but there was a distinct decline in seedling height and dry weight between 100% PL0 and 80% PL0:20% C0, followed by smaller decreases as the percentage of compost increased in the blends. A third experiment was conducted in 2013 with a different batch of peat-lite (PL1) after the compost had aged 17 months (now designated C1). Treatments were 100% PL1, 80% PL1:20% C1, and 80% PL1:20% C1 mixed with sulfur (S) at 1, 2, or 3 lb/yard3 of blend to acidify the media. The 100% PL1 treatment delayed seedling emergence and suppressed height and dry weight relative to seedlings grown in 80% PL1:20% C1 blends. The PL1 subsequently was found to have been produced in 2010, and the wetting agent had apparently degraded. The aged 2012 compost (C1) was not inhibitory to basil seedling growth when blended at 20% with the PL1, and in fact restored utility to the PL1. The carbon:nitrogen ratio of the original 2012 compost (C0) was 10.8:1, suggesting stability. It appeared that the main reason the C0 compost was inhibitory was that mineralization was slow or immobilization occurred, causing a lack of plant-available nitrogen, especially nitrate. Treatments with S lowered pH of the media, but there were no differences in basil seedling growth between the unamended 80% PL1:20% C1 blend and blends with added S. A fourth experiment compared three peat-lite media: PL1; a batch of the same medium as PL1 that was produced in 2013 (PL2); and a different medium also produced in 2013 (PL3). Peat-lite media were either used unblended, or blended with 20% C1 or 20% C2 (a fresh batch of YWC obtained from the same facility that had produced the original C0). The unamended PL1 was again inhibitory to basil seedling establishment and development. The two “fresh” peat-lite media (PL2 and PL3) were not inhibitory and were similar to each other in performance. A blend of 80% PL2 or 80% PL3 with 20% compost produced similar (C2) or somewhat better (C1) results than were obtained with the unamended peat. We conclude that a blend of 80% peat-lite medium and 20% YWC can be used to produce basil transplants. However, producers must consider the quality of the peat-lite medium and the compost based on the age and composition of the components.

Open access

Teal Hendrickson, Bruce L. Dunn, Carla Goad, Bizhen Hu, and Hardeep Singh

Hydroponic systems have become increasingly popular for growers in recent years for year-round local production. Whereas optimal air temperature for plant growth has been considered, optimal root zone temperatures have not been examined as thoroughly. The objective of this research was to determine the optimal water temperature for growing different types of basil hydroponically. Research was conducted at the greenhouses in Stillwater, OK. Seventeen cultivars were selected from six main types of basil and transplanted into Nutrient Film Technique hydroponic systems, and three water temperature treatments were applied: 23, 27.5, and 31 °C. Height, width, average leaf area, leaf number, chlorophyll concentration (chlorophyll readings obtained with the Minolta-502 SPAD meter), shoot fresh weight, shoot dry weight, and root dry weight were evaluated. In general, the 27.5 and 31 °C treatments were not greater than each other in terms of leaf number and root dry weight but were greater than the 23 °C treatment. The 31 °C treatment had the greatest height, whereas width, average leaf area, shoot fresh weight, and shoot dry weight were not different from the 27.5 °C treatment. The 23 °C treatment had the greatest chlorophyll concentration (SPAD) value. Cultivar differences were significant in average leaf area and SPAD, with ‘Spicy Bush’ having the smallest leaf area and purple basil having the greatest SPAD value. For all cultivars except purple basil and ‘Large Leaf Italian’, a 27.5 °C water temperature would be recommended for greater plant growth.