Bigtooth Maples Exposed to Asynchronous Cyclic Irrigation Show Provenance Differences in Drought Adaptation Mechanisms

in Journal of the American Society for Horticultural Science
View More View Less
  • 1 Department of Plant and Environmental Sciences, New Mexico State University, Box 30003, Las Cruces, NM 88003
  • 2 Agricultural Biometric Service, New Mexico State University, Box 30003, Las Cruces, NM 88003

Ecological traits such as an extensive range of natural distribution and tolerance to varying soil conditions, suggest that bigtooth maples (Acer grandidentatum Nutt.) could be popular landscape trees. But information on the tolerance of bigtooth maples to environmental stresses, such as drought, is virtually nonexistent. We studied physiological, growth and developmental traits of bigtooth maple plants from 15 trees native to Arizona, New Mexico, Texas, and Utah. Plants were grown in pots in a greenhouse and maintained as well-irrigated controls or exposed to drought and irrigated in cycles based on evapotranspiration. The ratio of variable to maximal fluorescence (Fv/Fm) was not different between drought-stressed and control plants, but the low Fv/Fm in plants designated as LM2 from the Lost Maples State Natural Area in Vanderpool, Tex., suggests these plants were relatively inefficient in capturing energy at PSII. Plants from another tree (LM5) originating from Lost Maples State Natural Area maintained similar predawn water potentials between drought-stressed and control plants after five cycles of drought. Plants from Dripping Springs State Park in Las Cruces, N.M., and those from LM2 had a strong, significant linear relationship between transpiration and stomatal conductance. Drought-stressed plants from Dripping Springs State Park, two plant sources from the Guadalupe Mountains in Salt Flat, Tex., designated as GM3 and GM4, and plants from trees designated as LM1 and LM2, had high relative growth rates and net assimilation rates. Drought-stressed plants from three of the four Guadalupe Mountain sources (GM1, GM3, GM4) had among the longest and thickest stems. Drought reduced shoot and root dry weight (DW). Although bigtooth maples showed several provenance differences in drought adaptation mechanisms, the lack of an irrigation effect on biomass allocation parameters such as root to shoot DW ratio and leaf area ratio implies that altered biomass allocation patterns may not be a common drought adaptation mechanism in bigtooth maples. Plants from selected provenances from the Guadalupe Mountains and Lost Maples State Natural Area in Texas, and to a lesser extent, provenances from Dripping Springs State Park in New Mexico might hold promise for selecting bigtooth maples for arid environments.

If the inline PDF is not rendering correctly, you can download the PDF file here.

Contributor Notes

Corresponding author; e-mail: rsthilai@nmsu.edu
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 153 33 4
PDF Downloads 115 45 8