Mechanical Harvesting Has Little Effect on Water Status and Leaf Gas Exchange in Citrus Trees

in Journal of the American Society for Horticultural Science
View More View Less
  • 1 University of Florida, Institute of Food and Agricultural Sciences, Citrus Research and Education Center, Lake Alfred, FL 33850

Mechanical harvesting of citrus trees can cause physical injuries, such as shedding of leaves, exposing roots, and scuffing bark. Although mechanical harvesting usually has not reduced yield, physiological consequences to the tree from these visible injuries have not been investigated. We hypothesized that physical injuries to tree canopies and root systems from a properly operated trunk shaker would not cause short-term physiological effects. Tree water status and leaf gas exchange of mature `Hamlin' and `Valencia' sweet orange [Citrus sinensis (L.) Osb.] trees that were harvested by a trunk shaker were compared to hand-harvested trees. A trunk shaker was operated with adequate duration to remove >90% of mature fruit or with excessive shaking time under various environmental conditions and drought stress treatments throughout the harvest season. Mid-day stem (Ψstem) and leaf (Ψleaf) water potentials along with leaf gas exchange were measured before and after harvest. Trees harvested by the trunk shaker did not develop altered water status under most conditions. Trees harvested with excessive shaking time and/or with limited soil water supply developed low Ψstem resembling Ψstem of drought-stressed trees. However, water potential of all treatments recovered to values of the well-irrigated, hand-harvested trees after rainfall. In addition, mechanical harvesting did not reduce CO2 assimilation, transpiration, stomatal conductance, water use efficiency, or photosystem II efficiency as measured by chlorophyll fluorescence. Thus, despite visible injuries, a properly operated trunk shaker did not result in any measurable physiological stress.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 130 18 3
PDF Downloads 119 42 1