Sorbitol Transporter Expression in Apple Sink Tissues: Implications for Fruit Sugar Accumulation and Watercore Development

in Journal of the American Society for Horticultural Science
View More View Less
  • 1 Department of Horticulture, Michigan State University, East Lansing, MI 48824-1325

In apple (Malus ×domestica Borkh.), where sorbitol is a primary photosynthetic product that is translocated throughout the plant, accumulation of sorbitol in sink cells appears to require an active carrier-mediated membrane transport step. Recent progress in isolation and characterization of genes for sorbitol transporters in sour cherry (Prunus cerasus L.) and mannitol transporters in celery (Apium graveolens L.) suggested that similar transporters may be present in apple tissues. A defect in these transporters could also explain the occurrence of the fruit disorder watercore, characterized by the accumulation of fluids and sorbitol in the apoplasmic free space. Our objectives therefore included isolation and characterization of genes for sorbitol transporters in apple tissues and comparisons of expression of transporter genes, especially in various sink tissues including watercored and non-watercored fruit tissues. We have isolated and characterized two sorbitol transporter genes, MdSOT1 and MdSOT2. Sequence analyses indicated that these are members of the major facilitator transporter superfamily that gives rise to highly hydrophobic integral membrane proteins. Heterologous expression and measurement of sorbitol uptake in yeast indicated that these are specific and with high affinities for sorbitol, with Kms for sorbitol of 1.0 and 7.8 mm for MdSOT1 and MdSOT2, respectively. Sorbitol transporter expression was evident in all sink tissues tested with the exception of watercore-affected fruit tissues. Sorbitol accumulation in apple sink tissues thus involves an apoplasmic active membrane transport step and watercore results from a defect in that process.

If the inline PDF is not rendering correctly, you can download the PDF file here.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 205 100 9
PDF Downloads 254 119 20