Acclimation of Wax Begonia to Light Intensity: Changes in Photosynthesis, Respiration, and Chlorophyll Concentration

in Journal of the American Society for Horticultural Science
View More View Less
  • 1 Horticulture Department, 1111 Plant Science Building, The University of Georgia, Athens, GA 30602-7273

Physiological acclimation of plants to light has been studied mostly at the leaf level; however whole-plant responses are more relevant in relation to crop growth. To examine the physiological changes associated with different daily light integrals (DLI) during growth of wax begonia (Begonia semperflorens-cultorum Hort.), we grew plants under DLI of 5.3, 9.5, 14.4, and 19.4 mol·m-2·d-1 in a whole-plant gas exchange system. Photosynthesis-light response curves of groups of 12 plants were determined after 25 d of growth. Physiological parameters were estimated per m2 ground area and per m2 leaf area. On a ground area basis, significant increases in dark respiration (Rd), quantum yield (α), the light compensation point (LCP), and maximum gross photosynthesis (Pg,max) were seen with increasing DLI. Variations in physiological parameters among different treatments were small when corrected for differences in leaf area. On a leaf area basis, α, LCP, and the light saturation point (LSP) did not change significantly, whereas significant increases in Rd and Pg,max were seen with increasing DLI. There was a small decrease in leaf chlorophyll concentration (6.3%, measured in SPAD units) with increasing DLI. This study indicates that wax begonias acclimate to low DLI by increasing their leaf chlorophyll concentration, presumably to more efficiently capture the available light, and to high DLI by increasing Pg,max to efficiently utilize the available light, thereby maximizing carbon gain under both situations.

Contributor Notes

Corresponding author; e-mail
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 474 147 13
PDF Downloads 440 192 25