Glucosinolate Content and Myrosinase Activity in Rapid-cycling Brassica oleracea Grown in a Controlled Environment

in Journal of the American Society for Horticultural Science

Crops of the Brassicaceae contain glucosinolates(GSs), which when hydrolyzed by the enzyme myrosinase, generate products involved in cancer chemoprotection, plant defense, and plant-insect interactions. A rapid-cycling base population of B. oleracea L. was grown in a hydroponic system in a controlled environment to determine the roles of temperature, photosynthetic photon flux (PPF), and photoperiod in GS concentration and myrosinase activity. The concentration of total GSs in leaves was 44% and 114% higher at 12 and 32 °C respectively than at 22 °C under constant light of 300 μmol·m-2·s-1. The concentration of glucoraphanin, the precursor to sulforaphane, a compound with chemoprotective properties, was 5-fold higher at 32 than at 22 °C. Total GSs were ≈50% lower in roots at 12 °C and 32 than at 22 °C. Total GSs in leaves decreased 20% when PPF was increased from 200 to 400 μmol·m-2·s-1. Myrosinase activity on a fresh weight basis (activity-FW) was ≈30% higher in leaves and stems at 12 and 32 °C than at 22 °C, and ≈30% higher in leaves grown at 200 and 400 μmol·m-2·s-1 than at 300 μmol·m-2·s-1. Consideration of climatic factors that influence the glucosinolate-myrosinase system may be necessary to optimize the planting and cultivation of Brassica crops for maximum health benefits.

If the inline PDF is not rendering correctly, you can download the PDF file here.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 266 167 12
PDF Downloads 341 214 12