Diurnal Operation of the Xanthophyll Cycle and the Antioxidant System in Apple Peel

in Journal of the American Society for Horticultural Science
View More View Less
  • 1 Department of Horticulture, Cornell University, Ithaca, NY 14853

Xanthophyll cycle conversion and the antioxidant system in the peel of apple fruit (Malus ×domestica Borkh. `Liberty') were monitored in the field over a diurnal course at about 3 months after full bloom. Compared with leaves, sun-exposed peel of apple fruit had much lower photosystem II operating efficiency at any given photon flux density (PFD) and a larger xanthophyll cycle pool size on a chlorophyll basis. Zeaxanthin (Z) level increased with rising PFD in the morning, reached the highest level during midday, and then decreased with falling PFD for the rest of the day. At noon, Z accounted for >90% of the xanthophyll cycle pool in the fruit peel compared with only 53% in leaves. Efficiency of excitation transfer to PSII reaction centers (Fv′/Fm′) was negatively related to the level of Z in fruit peel and leaves throughout the day. In fruit peel, the antioxidant enzymes in the ascorbate-glutathione cycle, ascorbate peroxidase (APX), monodehydroascorbate reductase (MDAR), dehydroascorbate reductase (DHAR) and glutathione reductase (GR) showed a diurnal pattern similar to that of incident PFD. In contrast, the activities of APX and GR in leaves did not change significantly during the day although activities of both MDAR and DHAR were higher in the afternoon than in the morning. In both fruit peel and leaves, superoxide dismutase activity did not change significantly during the day; catalase activity showed a diurnal pattern opposite to that of PFD with much lower activity in fruit peel than in leaves. The total ascorbate pool was much smaller in fruit peel than in leaves on an area basis, but the ratio of reduced ascorbate to oxidized ascorbate reached a maximum in the early afternoon in both fruit peel and leaves. The total glutathione pool, reduced glutathione and the ratio of reduced glutathione to oxidized glutathione in both fruit peel and leaves also peaked in the early afternoon. We conclude that the antioxidant system as well as the xanthophyll cycle responds to changing PFD over the course of a day to protect fruit peel from photooxidative damage.

Contributor Notes

Corresponding author; e-mail LC89@Cornell.edu.
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 128 34 1
PDF Downloads 116 53 5