Photosynthetic Responses of Container-grown Illicium L. Taxa to Sun and Shade

in Journal of the American Society for Horticultural Science
View More View Less
  • 1 University of Georgia, Coastal Plain Experiment Station, Department of Horticulture, Tifton, GA 31793-0748

Illiciums, or star-anises, have increased in popularity in the nursery and landscape industries. However, confusion exists as to which taxa are tolerant of high light intensities during production and subsequent establishment in the landscape. We investigated the effect of two light intensity treatments, 45% and 100% full sunlight, on gas-exchange parameters of five Illicium taxa: Illicium anisatum L., I. floridanum Ellis. `Pebblebrook', I. henryi Diels., I. lanceolatum A.C. Sm., and I. parviflorum Michx. Ex. Vent. `Forest Green'. Light-response curves were determined for individual leaves, and mean response parameters calculated. Chlorophyll and total carotenoids were analyzed after extraction in acetone, with total chlorophyll also estimated with a SPAD chlorophyll meter. In general, highest rates of CO2 assimilation (Amax) and lowest rates of dark respiration (Rd) were found in the 45% light treatment for all taxa. Both Illicium anisatum and I. floridanum `Pebblebrook' had substantial reductions in Amax in 100% light, 94% and 81% respectively, compared to plants grown in the 45% light treatment. Illicium henryi failed to survive the 100% light treatment. Illicium lanceolatum and I. parviflorum `Forest Green' were least affected by the 100% light treatment. Severe photooxidative bleaching was noted and confirmed by SPAD and pigment data, although SPAD readings were a poor predictor of total chlorophyll. For taxa of Illicium in our study, photosynthetic gas-exchange parameters and foliage pigment characteristics were improved in the low light treatment, suggesting optimal growth occurs in shaded conditions.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 123 24 2
PDF Downloads 168 58 1