Development and Characterization of PCR Markers in Cucumber

in Journal of the American Society for Horticultural Science
View More View Less
  • 1 U.S. Department of Agriculture, Agricultural Research Service, Vegetable Crops Unit, Department of Horticulture, 1575 Linden Drive, University of Wisconsin, Madison, WI 53706

Highly polymorphic microsatellites or simple sequence repeat (SSR), along with sequence characterized amplified region (SCAR) and single nucleotide polymorphisms (SNP), markers are reliable, cost-effective, and amenable for large scale analyses. Molecular polymorhisms are relatively rare in cucumber (Cucumis sativus L.) (3% to 8%). Therefore, experiments were designed to develop SSR, SCAR and SNP markers, and optimize reaction conditions for PCR. A set of 110 SSR markers was constructed using a unique, strategically applied methodology that included the GeneTrapper (Life Technologies, Gaithersburg, Md.) kit to select plasmids harboring microsatellites. Of these markers, 58 (52%) contained dinucleotide repeats (CT, CA, TA), 21 (19%) possessed trinucleotide repeats (CTT, ATT, ACC, GCA), 3 (2.7%) contained tetranucleotide repeats (TGCG, TTAA, TAAA), 4 (3.6%) enclosed pentanucleotide repeat (ATTTT, GTTTT, GGGTC, AGCCC), 3 (2.7%) contained hexanucleotide repeats (CCCAAA, TAAAAA, GCTGGC) and 21 possessed composite repeats. Four SCARs (L18-3 SCAR, AT1-2 SCAR, N6-A SCAR, and N6-B SCAR) and two PCR markers based on SNPs (L18-2H19 A and B) that are tightly linked to multiple lateral branching (i.e., a yield component) were also developed. The SNP markers were developed from otherwise monomorphic SCAR markers, producing genetically variable amplicons. The markers L18-3 SCAR and AT1-2 SCAR were codominant. A three-primer strategy was devised to develop a codominant SCAR from a sequence containing a transposable element, and a new codominant SCAR product was detected by annealing temperature gradient (ATG) PCR. The use of a marker among laboratories can be enhanced by methodological optimization of the PCR. The utility of the primers developed was optimized by ATG-PCR to increase reliability and facilitate technology transfer. This array of markers substantially increases the pool of genetic markers available for genetic investigation in Cucumis.

If the inline PDF is not rendering correctly, you can download the PDF file here.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 292 84 8
PDF Downloads 468 234 25