Drought Responses among Seven Southwestern Landscape Tree Taxa

in Journal of the American Society for Horticultural Science
View More View Less
  • 1 Department of Agronomy and Horticulture, New Mexico State University, Box 30003, Las Cruces, NM 88003

Identification of tree taxa that can thrive on reduced moisture regimes mandated by xeriscape programs of the southwest United States could be facilitated if responses to drought of those taxa are determined. Leaf water relations, plant development, and cuticular wax content of seven taxa maintained as well-irrigated controls or exposed to drought and irrigated based on evapotranspiration were studied. Leaf water potential of drought-stressed Fraxinus velutina Torr. (Arizona ash), Koelreuteria paniculata Laxm. (golden rain tree), Quercus macrocarpa Michx. (bur oak), and Quercus muehlenbergii Engelm. (chinkapin oak) were lower at predawn than the controls. Drought-stressed plants of F. velutina, K. paniculata, and Quercus lobata Née (California white oak) had more negative midday water potential than the control plants. Drought reduced stomatal conductance to as little as 17%, 23%, and 45% of controls in F. velutina, K. paniculata, and Q. macrocarpa, respectively. Drought-stressed plants of F. velutina, K. paniculata, Q. macrocarpa, and Q. muehlenbergii had reduced transpiration rates. Fraxinus velutina had both the highest net assimilation rate (NAR) and relative growth rate (RGR) regardless of irrigation treatment. Mean specific leaf weight (dry weight (DW) of a 1-cm2 leaf disc divided by the weight), trichome density, stomatal density, leaf thickness, and cuticular wax content varied among species but not between irrigation treatments. Leaves of Q. buckleyi Buckl. (Texas red oak) had one of the highest stomatal densities, and also had leaves which were among the waxiest, most dense, and thickest. Abaxial leaf surfaces of F. velutina were the most pubescent. Across species, drought led to lower ratios of leaf surface area to root DW, and leaf DW to root DW. Quercus buckleyi plants subjected to drought had the highest root to shoot DW ratio (3.1). The low relative growth rate of Q. buckleyi might limit widespread landscape use. However, Q. buckleyi may merit increased use in landscapes on a reduced moisture budget because of foliar traits, carbon allocation patterns, and the relative lack of impact of drought on plant tissue water relations.

If the inline PDF is not rendering correctly, you can download the PDF file here.

Contributor Notes

Assistant professor and corresponding author; e-mail rsthilai@nmsu.edu.
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 144 46 9
PDF Downloads 187 79 17