Calcium-activated Root Growth and Mineral Nutrient Accumulation of Lupinus havardii: Ecophysiological and Horticultural Significance

in Journal of the American Society for Horticultural Science
View More View Less
  • 1 Department of Agronomy and Horticulture, New Mexico State University, Las Cruces, NM 88003

Lupinus havardii Wats. (Big Bend bluebonnet) has received considerable attention as a new specialty cut flower crop. We studied the consequences of Ca fertigation on growth, water use, and mineral nutrient uptake of L. havardii (`Texas Sapphire') for 88 days in a greenhouse. Four Ca concentrations were included (as CaCl2) in the fertigation solution at concentrations of 0, 2.5, 5.0, or 10.0 mm. Calcium supply did not affect the number of racemes produced per plant or total dry matter accumulation per plant. However, root dry matter accumulation, root: shoot ratio, net root mineral nutrient accumulation (milligrams P, K, Ca, Mg, and Fe per plant; micrograms Mn, B, and Cu per plant), and the preferential allocation of mineral nutrients to roots were influenced quadratically by CaCl2 supply, increasing up to 5.0 mm CaCl2 and then decreasing at 10.0 mm CaCl2. Lack of root sink response by plants exposed to 10.0 mm CaCl2 was associated with lowest daily rate of pot evapotranspiration, probably resulting from osmotic or Cl toxicity stress. Increased root sink strength for dry matter and mineral nutrients in response to CaCl2 supply up to 5.0 mm Ca is consistent with calcicole-like behavior and the native distribution of L. havardii on xeric, calcareous soils, where root growth and expansion favoring water and mineral nutrient acquisition may be of significant adaptive value for survival. The Carelated increase in root growth was reflected in up to a 5% to 20% increase in fertilizer P and K recovery per plant. Results indicate that Ca fertilization may be an effective horticultural strategy in greenhouse production of L. havardii, particularly for matching the natural edaphic habitat of the species and thus increasing efficiency of water and mineral nutrient management.

If the inline PDF is not rendering correctly, you can download the PDF file here.

Contributor Notes

Assistant professor and corresponding author; e-mail:
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 73 13 0
PDF Downloads 171 73 11