Nitrite Concentration Effects on NO3-N Uptake and Reduction, Growth, and Fruit Yield in Strawberry

in Journal of the American Society for Horticultural Science
View More View Less
  • 1 Horticultural Sciences Department, University of Florida, Gainesville, FL 32611-0690
  • | 2 Dynamac Corp., Mail Code DYN-3, Kennedy Space Center, FL 32899

Strawberries (Fragaria xananassa Duch. .Osogrande.) were grown hydroponically with three NO3-N concentrations (3.75, 7.5, or 15.0 mM) to determine effects of varying concentration on NO3-N uptake and reduction rates, and to relate these processes to growth and fruit yield. Plants were grown for 32 weeks, and NO3-N uptake and nitrate reductase (NR) activities in roots and shoots were measured during vegetative and reproductive growth. In general, NO3-N uptake rates increased as NO3-N concentration in the hydroponics system increased. Tissue NO3-. concentration also increased as external NO3-N concentration increased, reflecting the differences in uptake rates. There was no effect of external NO3-N concentration on NR activities in leaves or roots during either stage of development. Leaf NR activity averaged ~360 nmol NO2 formed/g fresh weight (FW)/h over both developmental stages, while NR activity in roots was much lower, averaging ~115 nmol NO2 formed/g FW/h. Vegetative organ FW, dry weight (DW), and total fruit yield were unaffected by NO3-N concentration. These data suggest that the inability of strawberry to increase growth and fruit yield in response to increasing NO3-N concentrations is not due to limitations in NO3-N uptake rates, but rather to limitations in NO3 - reduction and/or assimilation in both roots and leaves.