Sulfur Nutrition Affects Cellular Sulfur, Dry Weight Distribution, and Bulb Quality in Onion

in Journal of the American Society for Horticultural Science
View More View Less
  • 1 New Zealand Institute for Crop and Food Research Limited, Private Bag 4704, Christchurch, New Zealand

Three onion (Allium cepa L.) cultivars, `Southport White Globe', `Grano', and `Pukekohe Longkeeper' were grown at low to high S (at 0.5, 1.8, 3.0 or 4.0 meq·L-1) in hydroponic culture. Differential solvent extractions of bulbs were used to isolate quantitatively cell contents, cell wall proteins, and cell wall residue. The weight of the cell fractions, their S content, and the S content of intact bulbs were determined. Bulb characteristics of fresh weight (FW), firmness, soluble solids concentration (SSC), and soluble sugars were also determined. For all three cultivars, bulb FW increased with S from 0.5 to 4.0 meq·L-1. Sulfur had a significant effect on bulb firmness. Onion bulbs grown with S at 0.5 meq·L-1, the lowest S concentration, were significantly softer than onion bulbs grown at the highest concentration of 4.0 meq·L-1. Varying the S supply had a major effect on dry weight (DW) allocation to the cell wall residue. Bulbs of all three cultivars grown at the lowest S had significantly less DW in the cell walls compared to S at 3.0 or 4.0 meq·L-1. In contrast to the effect of S supply on DW allocation, varying S supply had no effect on total bulb S, free SO4-2, and on the S content of the cell contents and the cell wall residue and only a minor effect on cell wall proteins. There was no significant effect of S supply on either SSC or soluble sugars. At low S nutrition, which is limiting to the growth of onion bulbs, cell wall deposition is reduced, with a consequent decrease in bulb firmness. The S composition of the cellular components is maintained at the expense of bulb growth.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 128 35 4
PDF Downloads 138 46 8