Growth Respiration, Maintenance Respiration, and Carbon Fixation of Vinca: A Time Series Analysis

in Journal of the American Society for Horticultural Science
View More View Less
  • 1 Department of Horticulture, Georgia Station, The University of Georgia, 1109 Experiment Street, Griffin, GA 30223-1797
  • 2 Department of Statistics, The University of Georgia, Athens, GA 30602-1952

Respiration is important in the overall carbon balance of plants, and can be separated into growth (Rg) and maintenance respiration (Rm). Estimation of Rg and Rm throughout plant development is difficult with traditional approaches. Here, we describe a new method to determine ontogenic changes in Rg and Rm. The CO2 exchange rate of groups of 28 `Cooler Peppermint' vinca plants [Catharanthus roseus (L.) G. Don.] was measured at 20 min intervals for 2 weeks. These data were used to calculate daily carbon gain (DCG, a measure of growth rate) and cumulative carbon gain (CCG, a measure of plant size). Growth and maintenance respiration were estimated based on the assumption that they are functions of DCG and CCG, respectively. Results suggested a linear relationship between DCG and Rg. Initially, Rm was three times larger than Rg, but they were similar at the end of the experiment. The decrease in the fraction of total available carbohydrates that was used for Rm resulted in an increase in carbon use efficiency from 0.51 to 0.67 mol·mol-1 during the 2-week period. The glucose requirement of the plants was determined from Rg, DCG, and the carbon fraction of the plant material and estimated to be 1.39 g·g-1, while the maintenance coefficient was estimated to be 0.031 g·g-1·d-1 at the end of the experiment. These results are similar to values reported previously for other species. This suggests that the use of semicontinuous CO2 exchange measurements for estimating Rg and Rm yields reasonable results.

If the inline PDF is not rendering correctly, you can download the PDF file here.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 281 81 5
PDF Downloads 844 573 57