Influence of High Temperature and Reduced Irradiance on Glycoalkaloid Levels in Potato Leaves

in Journal of the American Society for Horticultural Science
View More View Less
  • 1 Department of Plant Sciences, North Dakota State University, Fargo ND 58105

Growth chamber and greenhouse experiments were conducted to investigate the effect of temperature and irradiance on foliar glycoalkaloids of three potato genotypes (Solanum tuberosum L.) that differ in glycoalkaloid content. Two genotypes (ND4382-17 and ND4382-19) produced the acetylated glycoalkaloids, leptine I and II, that contribute resistance to the Colorado potato beetle (CPB, Leptinotarsa decemlineata Say). The glycoalkaloids were separated and quantified by high performance liquid chromatography. Exposure of plants to high temperature (32/27 °C, 14-hour day/10-hour night) for 3 weeks under a 14-hour photoperiod with an irradiance of 475 μmol·m-2·s-1 significantly increased the levels of leptines I and II, solanine, and chaconine compared to that at low temperature (22/17 °C). Increases in foliar leptines and total glycoalkaloids at high temperature were 90% and 169%, respectively. Growing potato plants at low irradiance (75% reduction) for 2 or 4 weeks resulted in a significant reduction in the levels of leptine I and II (46%), solanine (43%), and chaconine (38%) compared to nonshaded plants. Transferring plants from high to low irradiance or from low to high irradiance for 2 weeks caused a decrease and an increase in glycoalkaloid concentration, respectively. Therefore, both temperature and irradiance influenced foliar levels of glycoalkaloids in potato plants without changing the leptines and solanine to chaconine ratios. Thus, irradiance and temperature influenced glycoalkaloid compounds that can effect resistance to CPB, especially leptine I and II.

If the inline PDF is not rendering correctly, you can download the PDF file here.

Contributor Notes

Corresponding author.
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 150 36 9
PDF Downloads 123 57 12