Gradients in Susceptibility and Resistance Mechanisms of Buddleia L. Taxa to the Two-spotted Spider Mite (Tetranychus urticae Koch)

in Journal of the American Society for Horticultural Science
View More View Less
  • 1 Department of Horticulture, The University of Georgia, Athens, GA 30602

Buddleia taxa were assessed for two-spotted spider mite (Tetranychus urticae Koch) resistance using a leaf disk bioassay, a novel shell vial bioassay and a field trial. Leaf pubescence and chemistry were examined for their role in two-spotted spider mite resistance. Results from bioassays and field sampling identified highly resistant taxa including B. fallowiana Balif. `Alba' and B. davidii × B. fallowiana Franch. `Cornwall Blue' as well as susceptible taxa including B. davidii Franch. `African Queen' and B. lindleyana Fort. ex Lindl. `Gloster'. The shell vial bioassay was an accurate predictor of field resistance to spider mite. Leaf pubescence was quantified by calculating the collective length of trichome branches per square millimeter of leaf surface area [effective branch length (EBL)]. EBL values ranged from 39 to 162 mm·mm-2 of leaf surface area among Buddleia taxa. Resistance was positively correlated with increased pubescence. Removal of pubescence by peeling resulted in increased oviposition of two-spotted spider mites. Exposing female two-spotted spider mites to a methylene chloride extract of B. davidii × B. fallowiana `Cornwall Blue' using a modified shell vial bioassay resulted in reduced oviposition and a methylene chloride extract of B. davidii `African Queen' resulted in no difference in oviposition when compared with a control. While pubescence is the best indicator of resistance to the two-spotted spider mite in Buddleia taxa, it is possible that defensive compounds are involved.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 164 20 0
PDF Downloads 111 54 10