Using a Puncture Test to Identify the Role of Seed Coverings on Thermotolerant Lettuce Seed Germination

in Journal of the American Society for Horticultural Science
View More View Less
  • 1 University of Florida, Institute of Food and Agricultural Sciences, Horticultural Sciences Department, Gainesville, Florida 32611-0690

Temperature is an important environmental factor that affects lettuce (Lactuca sativa L.) germination. The present research was conducted to determine the role of seed coverings on lettuce seed germination at high temperature. Five lettuce genotypes were primed in order to bypass thermoinhibitional effects on germination. During germination of primed and nonprimed seeds, imbibition followed a normal triphasic pattern. Primed seeds had higher final water content, a decreased imbibitional phase II, and germinated at 36 °C compared to nonprimed seeds of thermosensitive genotypes, which did not germinate at 36 °C. Puncture tests were conducted to determine the force required to penetrate the whole seed or endosperm of the five genotypes at 24 and 33 °C. `Dark Green Boston', a thermosensitive genotype, had the highest mean resistance (0.207 N) and PI 251245, a thermotolerant genotype, had the lowest (0.139 N). Resistance to penetration of the endopserm of the five genotypes was different at both temperatures. However, three thermotolerant genotypes had lower endosperm resistance than two thermosensitive types. At 36 °C, the penetration force for primed and nonprimed seeds was compared after the first hour of imbibition and 1 hour before radicle protrusion. The force required to penetrate the seed was affected by genotype, seed priming, and duration of imbibition. Puncture force decreased as imbibition time at 36 °C increased in primed and nonprimed seed of each thermotolerant genotype but not in the thermosensitive genotypes. Priming reduced the initial force necessary to penetrate the seed and endosperm in all genotypes. Thus, for radicle protrusion to occur, there must first be a decrease in the resistance of the endosperm layer as evidenced by priming or thermotolerant genotype. Then, the pericarp and integument are sufficiently weakened so that tissue resistance is lower than the turgor pressure of the expanding embryo, allowing germination to be completed.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 22 22 2
PDF Downloads 24 24 5