Seed Developmental Temperature Regulation of Thermotolerance in Lettuce

in Journal of the American Society for Horticultural Science
View More View Less
  • 1 Horticulture Department, National Chuang-Hsing University, Taichung, Taiwan
  • 2 University of Florida, Institute of Food and Agricultural Sciences, Horticultural Sciences Department, P.O. Box 110690, Gainesville, Florida 32611-0690
  • 3 University of Florida, Institute of Food and Agricultural Sciences, Everglades Research and Education Center, P.O. Box 8003, Belle Glade, Florida 33430-8003

Lettuce (Lactuca sativa L.) seeds can fail to germinate at temperatures above 24 °C. The degree of thermotolerance is thought to be at least partly related to the environment under which the seed developed. In order to study the effects of temperature during seed development on subsequent germination, various lettuce genotypes were screened for their ability to germinate at temperatures ranging from 20 to 38 °C. Seeds of the selected genotypes `Dark Green Boston' and `Valmaine' (thermosensitive), `Floricos 83', `Everglades', and PI 251245 (thermotolerant) were produced at 20/10, 25/15, 30/20, and 35/25 °C day/night temperature regimes in plant growth chambers. Seeds were germinated on a thermogradient bar from 24 to 36 °C under 12 h light/dark cycles. As germination temperature increased, the number of seeds that failed to germinate increased. Above 27 °C, seeds matured at 20/10 or 25/15 °C exhibited a lower percent germination than seeds that matured at 30/20 or 35/25 °C. Seeds of `Dark Green Boston' and `Everglades' that matured at 30/20 °C exhibited improved thermotolerance over those that matured at lower temperatures. Seeds of `Valmaine' produced at 20/10 °C exhibited 40% germination at 30 °C, but seeds that matured at higher temperatures exhibited over 95% germination. Germination of `Valmaine' at temperatures above 30 °C was not affected by seed maturation temperature. The upper temperature limit for germination of lettuce seed could thus be modified by manipulating the temperature during seed production. The potential thermotolerance of seed thereby increased, wherein thermosensitive genotypes became thermotolerant and thermotolerant genotypes (e.g., PI251245) germinated fully at 36 °C. This information is useful for improving lettuce seed germination during periods of high soil temperature, and can be used to study the biology of thermotolerance in lettuce.

If the inline PDF is not rendering correctly, you can download the PDF file here.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 208 87 2
PDF Downloads 194 70 2