Deferring Flowering of Greenhouse-grown Phalaenopsis Orchids by Alternating Dark and Light

in Journal of the American Society for Horticultural Science
Author: Yin-Tung Wang1
View More View Less
  • 1 Department of Horticultural Sciences, Texas A&M University System Agricultural Research and Extension Center, 2415 East Highway 83, Weslaco, TX 78596-8399

Most Phalaenopsis (the moth orchid) species and hybrids start to produce flowering shoots in the fall, bloom in January or February, and become limited in supply by April when market demand is strong. Means to defer the onset of flowering were studied. Starting 15 Sept. 1994, seedlings of 2-year-old hybrid Phalaenopsis TAM Butterfly were exposed to repeated cycles of 1 d darkness/1 d light (natural photoperiod, 1D/1L); 4 d darkness/3 d light (4D/3L); 7 d darkness/7 d light (7D/7L); and the natural photoperiod control (0D/7L). The dark treatments were achieved by covering plants with black fabric or by placing them in a dark cage. Treatments were terminated on 16 Dec., and all plants were exposed to the natural photoperiod. The control plants bloomed on 20 Jan. 1995, whereas the 4D/3L plants did not reach anthesis until 14 Apr., nearly 3 months later. Flowering of the 1D/1L and 7D/7L plants was also deferred until early April. Regardless of treatments, flower count and size were unaffected. In another experiment, beginning 15 Sept. 1995, 3-year-old plants were exposed to repeated weekly cycles of 2D/5L, 3D/4L, 4D/3L, or 5D/2L until 22 Jan. 1996. The nontreated control plants bloomed on 8 Feb. 1996, whereas the 5D/2L did not reach anthesis until 6 May. The 4D/3L treatment was not as effective as it was in 1994 and resulted in anthesis only 4 weeks after the control. In the last experiment, starting on 22 Jan. 1996, plants were removed at 2-week intervals from a 5D/2L treatment that was initiated on 15 Sept. 1995 and exposed to the natural photoperiod. Staggered anthesis was achieved. However, plants that bloomed in May and June had reduced flower count but not flower size.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 6 6 2
PDF Downloads 41 41 3