Biochemical and Genetic Linkage Analysis of Green Seed Color in Field Pea

in Journal of the American Society for Horticultural Science
View More View Less
  • 1 Crop & Food Research, Private Bag 4704, Christchurch, New Zealand

Developmental, environmental, and genetic factors affecting seed color were studied in the progeny of a cross between two white-flowered (aa) green cotyledon (ii) field peas (Pisum sativum L.): the pale large-seeded Marrowfat cultivar Primo and the greener small-seeded Prussian Blue OSU442-15. Changes in chlorophyll and carotenoid content during seed development of the parental genotypes were determined by high performance liquid chromatography analysis. Both cultivars accumulated similar pigment quantities per seed, but pigment loss was greater during maturation of `Primo'. Bleached and unbleached mature seed tissues also were compared for pigment composition. Lutein was the predominant pigment in bleached cotyledons of both cultivars. Only trace amounts of pheophytins were detected in unbleached seed. In both genotypes, chlorophyll A : B ratios were ≈1:1 in seed coats compared to 3:1 in cotyledons. Objective measurements of seed color in terms of luminance (lightness) and chrominance (hue and saturation) were made in YUV color space by video image analysis. Inheritance of seed color was studied in an F2 population derived from the `Primo' × `OSU442-15' cross and inbred descendants. Quantitative trait loci (QTL) for seed color were localized by interval mapping using a linkage map of 199 molecular markers spanning most of the genome and by bulked segregant analysis and selective genotyping. Four genomic regions affecting seed color were detected. A major gene accounting for 61% of the phenotypic variance in seed lightness (Y luminance component) was identified on linkage group V linked to r locus. Another major gene, which accounted for 56% of the phenotypic variance in seed hue (U chrominance component), was mapped to a linkage group containing group III and IV markers. A QTL with smaller effect on seed hue (U and V chrominance components) was detected on linkage group VII. Support for overdominant allelic interaction for a QTL on linkage group I, adjacent to the legumin locus Lg-J, was obtained by selective genotyping of the seed lightness distributional extremes.

If the inline PDF is not rendering correctly, you can download the PDF file here.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 173 48 5
PDF Downloads 147 75 4