Influence of European Red Mite on Leaf and Whole-canopy Carbon Dioxide Exchange, Yield, Fruit Size, Quality, and Return Cropping in `Starkrimson Delicious' Apple Trees

in Journal of the American Society for Horticultural Science

The hypothesis was tested that effects of late-season European Red Mite (ERM) [Panonychus ulmi (Koch)] injury on apple (Malus domestica Borkh.) fruit development are better explained by carbon physiology than by pest densities. Midseason ERM populations were allowed to develop in mature semi-dwarf `Starkrimson Delicious'/M26 trees with moderately heavy crops, then were controlled with miticides at different mite-day (activity of one mite per leaf for 1 day) levels as estimated by weekly leaf sampling. The range of final mite-days was from 250 to 2100 on individual trees. Seasonal fruit growth patterns were monitored. Diurnal whole-canopy net CO2 exchange rate (NCER) was measured in eight clear flexible balloon whole-canopy chambers on several dates before and after mite infestations. Mite injury reduced fruit growth rates. Leaf and whole-canopy NCER were reduced similarly. Late season fruit growth and final fruit size were correlated with accumulated mite-days, but were better correlated to whole-canopy NCER per fruit. Fruit firmness, color, soluble solids and starch ratings showed no correlation to mite-days. Number of flower clusters per tree and final fruit per tree the following year were not related to accumulated mite-days, but final fruit per tree the following year were better correlated to whole-canopy NCER per fruit. These results generally supported the hypothesis.

If the inline PDF is not rendering correctly, you can download the PDF file here.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 100 100 1
PDF Downloads 31 31 2