In vitro Tomato Fruit Cultures Demonstrate a Role for Indole-3-acetic Acid in Regulating Fruit Ripening

Jerry D. Cohen
Horticultural Crops Quality Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705-2350

Abstract. An in vitro system was used for the production of tomato (Lycopersicon esculentum) fruit in culture starting from immature flowers. This system produced small parthenocarpic (seedless) fruit in response to 10^{-4}M indole-3-acetic acid (IAA) supplied in the medium. Other auxins, auxin conjugates and antiauxins tested were not effective or produced markedly fewer fruit. Additional IAA supplied to the fruit culture media before breaker stage resulted in an increase in the time period between breaker and red-ripe stages from 7 days without additional IAA to 12 days when 10^{-4}M IAA was added. These results suggest that significant changes in the ripening period could be obtained by alteration of auxin relationships in tomato fruit.

There are five classes of generally recognized plant hormones that control plant growth and development throughout the life cycle of the plant. By far the most studied plant hormone in relation to fruit ripening and postharvest storage has been ethylene. Although we know much less about the other hormones in relation to fruit development and ripening, the utility of numerous agricultural sprays and practices suggest that the complex series of reactions of ripening fruit are controlled by an interplay of several classes of these plant hormones (Bangerth, 1983). In general, a relationship can be envisioned where ripening is controlled by a balance among several factors, but the details of such interactions are not well established.

An important goal of our research program has been to develop methods for understanding the hormonal relationships in fruit during development and ripening. Of particular interest to us was the possible alteration of ripening by auxins. As stated by Brady (1987), "The hypothesis that endogenous auxins play roles as ripening inhibitors is attractive... Research in this area has been hampered by the difficulty of equating responses to externally applied regulators with endogenous control by the growth regulator, by the interactions of the different regulators, and by analytical difficulties..." An additional difficulty encountered in studying the role of auxins in fruit results from the treatment itself. Treatment of whole fruit is often difficult due to problems of entry and stability. Because of the low surface to volume ratio, high treatment concentrations are often required to increase internal levels significantly (Frenkel and Dyck, 1973) and such levels approach the concentrations that induce ethylene formation.

Fruit tissues have changing levels of IAA throughout their developmental and ripening process (Buta and Spaulding, 1994; Miller et al., 1987; Miller, 1990). The levels of IAA appear to be related to ripening in two different ways in different fruits. The first pattern is shown by stone fruits such as peach, where IAA levels increase during the period of fruit growth, drop to a lower level during maturation, and finally increase dramatically during the period just preceding the ethylene burst at ripening (Miller et al., 1987). The data from peach support the long-held notion that very high IAA levels induce ethylene production during fruit ripening.

A second pattern is shown, however, by studies of auxin levels relative to ripening in tomato fruit. In tomato, the levels of IAA drop throughout fruit expansion (Buta and Spaulding, 1994) to very low levels. Such low levels are only rarely seen with other plant tissues and it is these auxin-deficient tissues that carry out the program for the terminal events of fruit ripening.

In addition to changes in the levels of IAA, tomato fruit also changes in its capacity to metabolize IAA during growth and ripening (Catalá et al., 1992, 1994; Rivó and Bangerth, 1992; Slovin and Cohen, 1993). Thus, the fruit is undergoing significant changes in both steady-state levels of IAA and in the metabolic processes that regulate the conjugation and degradation of IAA.

In studies on fruit physiology and, in particular, the hormone biochemistry of fruit tissues, researchers have traditionally been hampered by the size or bulk of the organ as well as the complexity of interactions occurring within such plant materials. Size limitations have often been overcome by the use of tissue pieces and slices. Unfortunately, the dangers of extrapolating from results obtained with wounded and rapidly repairing tissue to what is occurring in a bulky fruit in a maintenance phase as it moves toward ripening and senescence, have been only occasionally noted (Brady, 1987; Gouble and Soudain, 1993). The use of tissue discs have some advantages over whole fruit in terms of reduction of entry problems and tissue volume, but problems result from IAA oxidation at the cut surface (Castillo, 1986; Catalá et al., 1994) and a variety of wound effects including wound ethylene formation (Campbell et al., 1990; Catalá et al., 1992; Gouble and Soudain, 1993). In addition, tissue discs only undergo a limited program similar to the early events of the ripening period, show inconsistent effects upon treatment with physiological levels of IAA (Yunovitz and Gross, 1994), and show an altered pattern of ethylene evolution (Campbell et al., 1990; Gouble and Soudain, 1993). Thus, for studies of hormonal regulation of ripening, tissue discs may not accurately represent the normal ripening process as it occurs in the whole fruit.

Received for publication 16 Nov. 1995. Accepted for publication 7 Dec. 1995. This work was supported in part by grants from the U.S.-Israel Binational Agricultural Research and Development Fund (BARD, US-2498-94) and the U.S. Dept. of Energy (DE-AM02-94ER20153). The technical assistance of Joëta Hubbard and Dia Newman is gratefully acknowledged. For discussions that resulted in this work and for their advice on the manuscript, the author thanks Janet P. Slovin and James R. Dunlap. Indole-3-acetyl-1-β-D-glucose and 4-Cl-IAA were from D. Keglevic and V. Magnus, respectively, Ruder Boskovic Institute, Zagreb, Croatia. Indole-3-acetyl-ε-N-L-lysine was from T. Kosuge, Univ. of California, Davis. Mention of a trademark, proprietary product, or vendor does not constitute a guarantee or warranty by the U.S. Dept. of Agriculture and does not imply its approval to the exclusion of other products or vendors that may be suitable. The cost of publishing this paper was defrayed in part by the payment of page charges. Under postal regulations, this paper therefore must be hereby marked advertisement solely to indicate this fact.
Studies on the metabolism of IAA as well as other hormones has been aided by the ease of labeling of small seedlings grown on agar in sterile culture (Normanly et al., 1993; Wright et al., 1991). Extension of such labeling techniques to fruit tissue presented significant problems. For example, wounded tissue has high peroxidative activity, which is known to degrade IAA (Kokkinakis and Brooks, 1979; Català et al., 1994). Thus, when using tissue sections, Yunovitz and Gross (1994) found no consistent effects of IAA until applications reached a level estimated to be 5000 fold the endogenous level (Buta and Spaulding, 1994). As shown by Català et al. (1994), twelve fold increases in peroxidases/IAA oxidase occur in cut tomato discs within the first 24 h post excision. These peroxidases account for the bulk of the decarboxylative IAA metabolism reported in such tissues and probably account for the discrepancy in the lack of effectiveness of IAA with discs, as cited above, and the small observed effect of IAA on delaying the ripening process or the initiation of ripening found with intact tomato fruit (Abdel-Kader et al., 1966; Babbitt et al., 1973; McGlasson et al., 1978). Of critical importance for studies of hormonal metabolism in fruit is the observation that the decarboxylative IAA metabolism noted in cut tissues does not occur in intact fruit (Català et al., 1992, 1994; Normanly et al., 1995).

Early studies by Nitsch (1951) showed that mature floral organs of tomato could be cultured and mature fruit obtained. More recently, Mukai (1985), Ishida (1991) and Ishida et al. (1993) have used a similar approach to study fruit ripening in vitro. For hormonal studies, it is important to use a system where large sample numbers can be obtained, and simple hormone treatments can be applied in the absence of developing seeds, which are known to produce hormones themselves (McGlasson et al., 1978). By using immature flowers grown under standard culture conditions, we show that a model parthenocarpic system has utility for studying the effect of phytohormones on fruit ripening.

Materials and Methods

‘Ailsa Craig’ tomato plants were grown in a greenhouse in 25-cm pots containing a commercial soil and peat mixture. Soil moisture was maintained using an automated drip irrigation system. When the plants were mature and in full bloom, flowers were harvested using a sharp razor blade leaving 1 cm of stem attached. Immediately upon harvesting, the flowers were placed in ice cold water until all the flowers were harvested and brought to the laboratory. Flowers were then surface sterilized by treatment for 10 min in 400 ml of a 10% solution of commercial bleach containing about 200 µl of Tween 80, then rinsed on a nylon screen for culture. Care was taken that no solution remained in the tube for culture were selected at three stages of development based on three replicate fruit analyzed for each treatment.

Results

Designing the culture system. In the initial screen, flowers used for culture were selected at three stages of development based on size (3–4 mm, 5–6 mm, and 7–8 mm). All developmental stages tested formed fruit, but only on medium containing IAA (data not shown). Only one sample growing on no hormone set fruit, and upon dissection this fruit was shown to contain a small number of seeds. A larger study (n = 24) was then conducted using 3–4 mm flowers with and without IAA. Only the IAA treated flowers produced fruit, and these fruit did not contain seeds (Fig. 1). In addition to IAA, 15 other compounds were tested for their ability to support fruit development using this model system. None of the auxins, auxin conjugates, or antiauxins gave results comparable to IAA. IAA-alanine and IAA-aspartate each produced 1 fruit out of 6 flowers, while IAA treatment resulted in fruit developing from each of the 6 flowers planted on IAA media (data not shown). None of the other compounds tested produced fruit. Thus, the naturally occurring auxin, IAA, was used for all additional studies.

Based on these results, a larger scale experiment was designed to determine if significant numbers of such in vitro fruit could be produced using 3–4 mm sized flowers. An undergraduate student...
was trained in this procedure and could easily produce more than 50 flower cultures per day. From a series of experiments where 500 flowers were planted on IAA media, contamination and flower death resulted in a loss of 43 flowers (8.6%). All of the remaining flowers produced fruit, although 49 fruit (9.8%) prematurely senesced without going through the full ripening program. The remainder developed into small red-ripe seedless fruit (Fig. 2).

IAA effects on fruit ripening. The effect of adding IAA on fruit ripening was tested by adding IAA to the culture media of immature and mature green fruit. The amount added was 200 µl of a 10⁻³ M IAA solution to the 20 ml of agar medium to give a final concentration of 10⁻⁵ M IAA. Thus, the added IAA was equal to about 10% of that which had been in the medium at the start of the experiment for flower initiation. As shown in Fig. 3, the addition of IAA late in the culture period almost doubled the mean time between breaker stage and red-ripe. Treatment did not affect the days to breaker nor did treatment more than 10 days before breaker have any noticeable effect (data not shown). IAA addition to the culture media resulted in a marked increase in internal IAA levels in the breaker stage fruit (Table 1).

Discussion

Studies with whole fruit of tomato and of other crops have shown that auxin treatments can provide some delay in fruit senescence.
ripening and softening (Abdel-Kader et al., 1966; Babbitt et al., 1973; Frenkel and Dyck, 1973; McGlasson et al., 1978; Tingwa and Young, 1975; Vendrell, 1969) and that auxin treatment, however, required auxin treatment, and the auxin level in relation to uptake and distribution (Vendrell, 1970). Such techniques usually also require that the fruit be harvested before treatment.

The problems of tissue sections and the difficulties of using whole fruit prompted us to consider alternative approaches. In particular, we desired a system that was suitable for complex labeling studies to establish precursor/product relationships in hormone metabolism, a system in which transgene effects could be studied in isolation from the mother plant, and where normal development and ripening could be studied while hormone levels and metabolism were manipulated. Tissue culture has been used to overcome similar problems in other situations, and the original report by Nitsch (1951) and more recent results reported by Mukai (1985) and Ishida (1993) prompted us to consider such an approach to study fruit development. Based on these earlier studies we developed a system for the mass culture of immature tomato inflorescences to produce parthenocarpic fruit.

It is interesting to note that IAA was the only auxin that gave consistent fruit production from cultured flowers. Unlike auxin conjugates and synthetic auxins that provide an auxin source over prolonged culture (Hangarter and Good, 1981), IAA in culture media is more transient and has been reported to be lost from the medium over the first 5–7 days (Dunlap et al., 1986, Dunlap and Robacker, 1988, Stasinopoulous and Hangarter, 1990). This suggests that auxin in the medium may be required for fruit induction but not for organ growth. This hypothesis is also supported by the low IAA content in fruit at the breaker stage (Table 1).

Using the in vitro system it was possible to test the earlier concepts about the role of IAA in fruit ripening. As discussed above, tissue sections respond to high levels of IAA by increased rates of ripening, probably due to ethylene induction. Whole fruit studies had suggested that ripening could be delayed by treatment with moderate levels of IAA. Using in vitro fruit, we have confirmed and extended the earlier observation that tomato fruit undergo a delay in the final steps of fruit ripening if IAA is provided to the fruit at the mature green stage. It is important to note, however, that in this current study the color change accompanying ripening in tomato was the primary criteria for evaluation and we do not yet know if other changes, such as acidity, texture, and flavor are similarly changed by auxin treatment. We do not yet know the relationship between ripening of in vitro fruit and those that normally develop on the plant. Comparisons between these to situations should be done carefully. IAA levels in the in vitro fruit, however, were similar to that reported by Buta and Spaulding (1994) for tomato pericarp from vine grown fruit at the same stage of ripening.

Literature Cited

