Leaf Maturity and Temperature Affect Removal of Floral Buds from Camellia Ethephon

in Journal of the American Society for Horticultural Science
View More View Less
  • 1 Department of Plant Science, Massey University, Private Bag, Palmerston North, New Zealand

The influence of temperature and leaf maturity on ethephon-promoted abscission was examined by simultaneously applying either ethylene (10.5 μl·liter-1) or ethephon (0 to 4 ml·liter-1) to potted Camellia plants at four constant temperatures (10 to 30C). The abscission rate (time to 50% abscission) and extent of abscission of leaves, and vegetative and floral buds was measured. Increased temperature promoted the rate and extent of ethephon-promoted abscission and increased ethylene-promoted abscission rate of all organs of Camelliu. Lower temperatures reduced the abscission rate after ethephon application more than that following ethylene application. Sensitivity to ethephon was greater for leaves on newly extending shoots, although once shoot elongation and leaf expansion had ceased, leaves became less sensitive. Ethephon sensitivity increased progressively with maturation over the following 2 years. Optimal thinning of floral buds. at low temperatures required high ethephon concentrations, while at high temperatures, low ethephon concentrations were optimal. The influence on abscission of the time of year when ethephon was applied, is suggested to be due to tissue maturity, which affects tissue ethylene sensitivity, and temperature, which affects ethylene release from ethephon and tissue response to ethylene. Chemical name used: (2-chloroethyl) phosphoric acid (ethephon).

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 57 16 1
PDF Downloads 87 42 3