Stomatal Conductance of Lysimeter-grown Asian Pear Trees before and during Soil Moisture Deficits

A. Richard Renquist
Orchard Mesa Research Center, Colorado State University, Grand Junction, CO 81503

Horst W. Caspari, M. Hossein Behboudian, and David J. Chalmers
Department of Plant Science, Massey University, Palmerston North, New Zealand

Additional index words. Pyrus serotina, nashi, Asian pear, lysimetry, transpiration, heat-pulse technique, porometry

Abstract. Stomatal conductance (g_s) of ‘Hosui’ Asian pear (Pyrus serotina Rehder) trees growing in lysimeters was characterized for trees in well-watered soil and after brief water deficit. The measures of water status used to interpret g_s data were soil-water content, leaf water potential (ψ_l), and instantaneous water use (trunk sap flow by the compensation heat-pulse technique). The diurnal course and range of g_s values of well-irrigated Asian pear trees were similar to those reported for other tree fruit crops. Soil moisture at the end of a midsummer deficit period was 60% of lysimeter pot capacity, and diurnal ψ_l reflected this deficit predawn and in the late afternoon compared to well-irrigated trees. The g_s was sensitive to deficit irrigation during more of the day than ψ_l, with g_s values <3 mm s⁻¹ for most of the day; these were less than half the conductances of well-irrigated trees. The reduction of g_s in response to a given soil-water deficit was not as great on days with lower evaporative demand. After a water deficit, g_s recovered to predeficit values only gradually over 2 to 3 days. The low g_s of trees in dry soil was the apparent cause of reduced transpiration, measured by trunk sap flow, and reduced responsiveness of sap flow to fluctuations in net radiation.

Asian pears, also known as nashi in the Pacific Rim, are an important new crop in New Zealand (Caspari et al., 1993a). Information on their irrigation management is needed, and research has centered around a drainage lysimeter facility constructed at Massey Univ. in 1987. Several aspects of Asian pear water relations have been studied, including the role of stomata.

Aerodynamically rough, well-ventilated canopies such as forests or orchards are closely coupled to their environment. Consequently, a change in canopy conductance brought about by a change in stomatal conductance (g_s) can therefore cause an almost-proportional change in transpiration (Jarvis and McNaughton, 1986). Jones and Higgs (1989) used a model involving air temperature, vapor-pressure deficit (VPD), and irradiance to predict apple transpiration, and the model fit could be significantly improved as great on days with lower evaporative demand. After a water deficit, g_s recovered to predeficit values only gradually over 2 to 3 days. The low g_s of trees in dry soil was the apparent cause of reduced transpiration, measured by trunk sap flow, and reduced responsiveness of sap flow to fluctuations in net radiation.

Materials and Methods

Twelve fourth-season ‘Hosui’ Asian pear trees on Pyrus serotina seedling rootstock were grown in 1.0-m-diameter, 1.2-m-deep lysimeters located in a 1.1-ha block of Asian pear trees in the orchards of Massey Univ., Palmerston North, New Zealand (lat. 40.2°S, long. 175.4°E). The 12 drainage-type lysimeters consisted of steel cylinders tapered to a point for water collection, each within a concrete sleeve. Spacing was 1.2 m between trees and 5 m between rows. Lysimeters were filled with sand similar in texture to that of Manawatu fine sandy loam in the surrounding orchard. Details were provided by Chalmers et al. (1992). Trees were trained onto a Tatura trellis (Chalmers et al., 1978).

Irrigation water and nutrients were supplied to each lysimeter at 16 liters·h⁻¹ through eight drippers controlled by the same computerized system that measured drainage and monitored environmental sensors. Lysimeters had flexible covers that fastened around the tree trunk to keep the rain out. Water use was determined indirectly using a conservation of water equation (Chalmers et al., 1992). Irrigation amount and drainage were measured directly. Changes in soil-water storage were calculated for each lysimeter from twice-weekly neutron hydrometry (model 503DR; CPN Corp., Martinez, Calif.) readings of water content made at 0.2-m intervals, 0.2 to 1.0 m beneath the sand medium surface. During drying cycles, soil moisture was measured more frequently and at 0.1-m-deep intervals. Hydrometry calibration and correcting soil-water storage to liters have been reported (Chalmers et al., 1992).

All 12 trees were irrigated equally and kept above pot capacity from mid-September 1990 until the end of May 1991, except for three several-day drying cycles designated DC-1, DC-2, and DC-3 (Caspari et al., 1993a). The cycles referred to here are DC-2, from 14 to 23 Jan. 1991 (99 to 108 days after full bloom), and DC-3, from 28 Feb. to 13 Mar. 1991 (144 to 157 days after full bloom). Pot capacity is defined as the soil-moisture content when drainage has just ceased after wetting. Deficits were maintained only briefly, so...
as not to prevent trees from filling their allotted trellis space during this fourth season. Class A pan evaporation was measured within 1 km of the lysimeter site.

Diurnal ψ_l and g_s were measured on days when all trees were well irrigated and on days during drying cycles. A pressure chamber (Soilmoisture Equipment Corp., Santa Barbara, Calif.) was used for measuring ψ_l, and a transit-time porometer (MK3; Delta-T Devices, Cambridge, U.K.) was the primary instrument for measuring g_s. Asian pear trees were confirmed to be hypostomatous by making a silicone rubber impression. Pretesting in December indicated that shaded and young (light-green) leaves should not be used to measure g_s. The ψ_l measurements, on the other hand, were more consistent if shaded leaves were used. Each mean ψ_l value for a given irrigation regime included at least 10 leaves. Mean g_s values included at least 6 readings and usually 12 or more. Seasonal ψ_l measurements and meteorological data were reported previously (Caspari et al., 1993a).

In addition to the lysimeter method, the compensation heat-pulse technique (Swanson and Whitfield, 1981) was used to measure transpiration of two adjacent trees from 18 Jan. to 13 Mar. 1991 from the rate of sap movement upward through the stem. Thermistor probes were installed 5 and 15 mm below the cambium. Details were reported earlier (Caspari et al., 1993a). The heat-pulse data were recorded by a Custom Heat-pulse Logger (HortResearch, Palmerston North). Sap flux was derived from the corrected sap velocities according to Edwards and Warwick (1984).

Results and Discussion

Diurnal g_s of well-watered Asian pear trees for 3 days in Summer and Fall 1991 are given in Fig. 1. Generally, g_s increased until midmorning and remained relatively high until late afternoon. Stomata closed rapidly during the evening in response to falling light levels. Afternoon g_s patterns were more variable on the two dates after the crop’s removal in early February, although lower evaporative demand and other factors could also have affected this variability. Similar diurnal g_s patterns were also observed during the 1991–92 season, although all g_s values were <8 mm s$^{-1}$ (Caspari, 1993). When measurements under low light intensity are excluded, the g_s of well-watered trees was 4 to 10 mm s$^{-1}$. The g_s pattern and range agree well with those reported for other fruit crops (Jones et al., 1985; Lakso, 1985). Research on some tree fruit crops did not find a primary link between g_s and leaf water status, a result that suggests ψ_l is secondary to environmental factors such as light, CO$_2$ concentration, and VPD (Syvertsen, 1985). However, Higgins et al. (1992) reported that stomata of greenhouse-grown Asian pear trees were comparatively unresponsive to VPD changes, so that transpiration increased linearly with VPD at 0.7 to 3.8 kPa. This result was supported by field measurements of transpiration (trunk sap flow) and net radiation of Asian pear trees (Caspari, 1993). Daily sap flow for well-watered trees closely followed the net radiation pattern, which would not be expected on warm sunny days if stomata were able to control transpiration via rapid response to VPD, net radiation, or leaf temperature. This result suggests that, even with adequate soil moisture, Asian pear trees may become highly water stressed in a hot arid climate. Asian pear trees are able to grow well in such climates, however, a result that raises the question of whether transitory leaf water deficits larger than those that occurred here could result in stomatal regulation of transpiration.

Transit-time porometer readings in this lysimeter study were 1 to 10 mm s$^{-1}$, a range at which the instrument is most reliable. For characterizing stomatal behavior of a species in response to moisture deficit, of most interest are relative g_s values among treatments. To have a better sense of absolute values for Asian pear, we also directly compared the transit-time porometer with a steady-
state porometer (LI-1600; LI-COR, Lincoln, Neb.). Figure 2 shows that g_s values were consistently higher for the transit-time unit, although the differences were not large from 4 to 10 mm·s⁻¹. Each type of porometer tends to lack sensitivity at one end of the g_s range, such that g_s values of 1 to 3 mm·s⁻¹ (nearly closed stomata) are best measured with a transit-time unit, and high conductances are best measured with a steady-state unit (Jones, 1983). There are theoretical reasons for greater trust in the accuracy of a steady-state unit (Bell and Squire, 1981; Pearcy et al., 1989), but the comparison in Fig. 2 enhanced our confidence in the transit-time unit for measuring g_s over the range of our data. However, using the transit-time unit on one occasion gave ‘Hosui’ trees growing in the field g_s values as high as 22 mm·s⁻¹ (data not shown). Such high g_s values would need to be verified with a steady-state unit.

Reducing the soil-water storage by withholding irrigation for 10 days increased plant moisture stress and markedly decreased g_s during the final days. At the end of DC-2 (14 to 23 Jan. 1991), soil moisture had fallen to 60% of pot capacity. Water-stressed trees on 23 Jan. had a 0.2 MPa lower predawn ψ_l than at the start of DC-2 (Caspari et al., 1993a). The ψ_l of stressed trees also declined 0.3 MPa more during the morning and recovered more slowly during late afternoon (at 1730 HR, ψ_l was 1.0 MPa lower in stressed than in well-watered trees). While data were from different, but meteorologically similar, days (both with 6 mm pan evaporation), it is reasonable to conclude that ψ_l measured before dawn and/or in the late afternoon is a good indicator of Asian pear water deficit. Early morning g_s values on 23 Jan. were similar to those of well-watered trees, but then declined rapidly and reached a minimum before noon (Fig. 3b). The g_s recovered slightly during the afternoon, but remained much below values for well-watered plants; g_s was <3 mm·s⁻¹ for most of the day, about half that of the same trees before irrigation was withheld. This distinct difference shows that g_s is also a good indicator of water deficit in Asian pear, and for more hours during the day than ψ_l. The sensitivity of Asian pear g_s to soil moisture is similar to findings with peach (Tan and Buttery, 1982), apple (Flore et al., 1985; Higgs and Jones, 1990; Lakso, 1985), cherry (Flore et al., 1985), and grape (Downton et al., 1987). Based on findings with other fruit crops (Lakso, 1985), the degree of reduced g_s in this study was possibly enough to reduce photosynthetic rate.

Caspari (1993) has compared sap flow rates for well-watered Asian pear trees with those in drier soil during DC-2 and DC-3. While the minimum soil-water levels were both =60% of pot capacity, the transpiration decline was greater during DC-2, when evaporative demand was higher. He found that, in well-watered trees, daily sap flow closely followed the pattern of incoming solar and/or net radiation, such that sap flow declined during cloud passage. The diurnal curve for net radiation, while not shown here, can therefore be inferred from Fig. 3a (moist soil). In contrast, sap flow rate on 23 Jan. (dry soil) decoupled from net radiation and in the afternoon was quite unresponsive to cloud passage. This decoupling was less apparent during DC-3 (Caspari, 1993), when evaporative demand was lower (3.2 vs. 6 mm pan evaporation). This relationship between solar radiation, sap flow, and g_s was demonstrated in more detail the following year (Caspari et al., 1993b). Partial stomatal closure in response to the combination of dry soil and high evaporative demand (Fig. 3b) was the apparent cause of the 36% reduction in transpiration on 23 Jan. vs. 18 Jan. (dry vs. moist, Fig. 3a).

When soil water was restored after the drying cycles, g_s gradually recovered to prestress values. This was examined in more detail at the end of DC-3, when four trees were returned to full irrigation on each of 3 consecutive days. On 14 Mar., mean midday g_s was 5.3 mm·s⁻¹ on trees rewatered 11 Mar., 4.0 mm·s⁻¹ on those irrigated 12 Mar., and 2.4 mm·s⁻¹ on those rewatered 13 Mar. A parallel response in transpiration occurred after DC-2, when trunk...

![Graph](image-url)
sap flow recovered gradually over 4 to 5 days (Caspari et al., 1993a). These findings are similar to past reports of fruit tree g responses during recovery from water deficit. Peach trees rose for several days after rewatering (Tan and Buttery, 1982), and apple and cherry trees required 2 to 3 days for g to recover fully (Flore et al., 1985).

Overall, these data indicate that, even in the relatively low evaporative demand climate of New Zealand, stomata can play an active role in controlling transpiration in Asian pears when soil moisture is low. Under well-watered conditions, g daily course and range were similar to those described for other fruit trees.

Literature Cited

