Growth and Gas Exchange by Lettuce Stands in a Closed, Controlled Environment

in Journal of the American Society for Horticultural Science

Two studies were conducted in which `Waldmann's Green' lettuce (Lactuca sativa L.) was grown hydroponically from seed to harvest in a large (20-m2), atmospherically closed growth chamber for the National Aeronautics and Space Administration's controlled ecological life support system (CELSS) program. The first study used metal-halide (MH) lamps [280 μmol·m-2·s-1 photosynthetic photon flux (PPF)], whereas the second used high-pressure sodium (HPS) lamps (293 μmol·m-2·s-1). Both studies used a 16-hour photoperiod, a constant air temperature (22 to 23C), and 1000 μmol·mol-1 CO2 during the light period. In each study, canopy photosynthesis and evapotranspiration (ET) rates were highly correlated to canopy cover, with absolute rates peaking at harvest (28 days after planting) at 17 μmol CO2/m2 per sec and 4 liters·m-2·day-1, respectively. When normalized for actual canopy cover, photosynthesis and ET rates per unit canopy area decreased with age (between 15 and 28 days after planting). Canopy cover increased earlier during the study with HPS lamps, and final shoot yields averaged 183 g fresh mass (FM)/plant and 8.8 g dry mass (DM)/plant. Shoot yields in the first study with MH lamps averaged 129 g FM/plant and 6.8 g DM/plant. Analysis of leaf tissue showed that ash levels from both studies averaged 22% and K levels ranged from 15% to 17% of tissue DM. Results suggest that lettuce should be easily adaptable to a CELSS with moderate lighting and that plant spacing or transplant schemes are needed to maximize canopy light interception and sustain efficient CO2 removal and water production.

If the inline PDF is not rendering correctly, you can download the PDF file here.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 206 127 4
PDF Downloads 206 123 6