Light Intensity Influences Leaf Physiology and Plant Growth Characteristics of Photinia × fraseri

in Journal of the American Society for Horticultural Science
View More View Less
  • 1 University of Florida, Institute of Food and Agricultural Sciences, Agricultural Research and Education Center, Monticello, FL 32344

Leaf physiology and plant growth of Photinia x fraseri Dress were assessed when grown under full sunlight or (100% sun) or polypropylene shadecloth with a light transmittance of 69%, 47%, or 29% sun. Plants in 69% or 47% sun usually had the highest midday net CO2 assimilation rates (A). Net CO, assimilation rate was most dependent on photosynthetic photon flex (PPF R2 = 0.60), whereas stomata] conductance to water vapor was primarily influenced by vapor pressure deficit (R2 = 0.69). Stomatal conductance was often inversely related to sun level, and intercellular CO2 concentration was often elevated under 29% sun. Midday relative leaf water content and leaf water potential were unaffected by light regime. Light-saturated A was achieved at ≈ 1550 and 1150 μmol·m-2·s-1 for 100% and 29% sun-grown plants, respectively. Under 29% sun, plants had a lower light compensation point and a higher A at PPF < 1100 μmol·m-2·s-1. Total growth was best under 100% sun in terms of growth index (GI) increase, total leaf area, number of leaves, and dry weight (total, stem, leaf, and root), although plants from all treatments had the same GI increase by the end of the experiment. Plants in all treatments had acceptable growth habit (upright and well branched); however, plants grown in 29% sun were too sparsley foliated to be considered marketable. There were no differences in growth among the four treatments 7 months after the Photinia were transplanted to the field.

If the inline PDF is not rendering correctly, you can download the PDF file here.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 142 64 3
PDF Downloads 184 83 4