Growth and Photosynthesis of Magnolia grandiflora `St. Mary' in Response to Constant and Increased Container Volume

in Journal of the American Society for Horticultural Science
View More View Less
  • 1 Department of Environmental Horticulture, IFAS, University of Florida, Gainesville, FL 32611

Growth of Magnolia grandiflora Hort. `St. Mary' (southern magnolia) trees in containers spaced 120 cm on center was studied for 2 years. During the 1st year, trees were grown in container volumes of 10, 27, or 57 liter. At the start of the second growing season, trees were transplanted according to six container shifting treatments [10-liter containers (LC) both years, 10 to 27LC, 10 to 57LC, 27LC both years, 27 to 57LC, or 57LC both years]. The mean maximum temperature at the center location was 4.8 and 6.3C lower for the 57LC than for the 27 and 10LC, respectively. Height and caliper, measured at the end of 2 years, were” greatest for magnolias grown continuously in 27 or 57LC. Caliper was greater for trees shifted from 10LC to the larger containers compared with trees grown in 10LC both years. Trees grown in 10LC both years tended to have fewer roots growing in tbe outer 4 cm of the growing medium at the eastern, southern, and western exposures. During June and August of the 2nd year, high air and growth medium temperatures may have been limiting factors to carbon assimilation. Maintenance of adequate carbon assimilation fluxes and tree growth, when container walls are exposed to solar radiation, may require increasing the container volume. This procedure may be more important when daily maximum air temperatures are lower during late spring or early fall than in midsummer, because low solar angles insolate part of the container surface.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 144 20 2
PDF Downloads 557 143 8