Quantitative Trait Locus Analysis in Avocado: The Challenge of a Slow-maturing Horticultural Tree Crop

in Journal of the American Society for Horticultural Science

The glossy, green-fleshed fruit of the avocado (Persea americana) has been the object of human selection for thousands of years. Recent interest in healthy nutrition has singled out the avocado as an excellent source of several phytonutrients. Yet as a sizeable, slow-maturing tree crop, it has been largely neglected by genetic studies, owing to a long breeding cycle and costly field trials. We use a small, replicated experimental population of 50 progeny, grown at two locations in two successive years, to explore the feasibility of developing a dense genetic linkage map and to implement quantitative trait locus (QTL) analysis for seven phenotypic traits. Additionally, we test the utility of candidate-gene single-nucleotide polymorphisms developed to genes from biosynthetic pathways of phytonutrients beneficial to human health. The resulting linkage map consisted of 1346 markers (1044.7 cM) distributed across 12 linkage groups. Numerous markers on Linkage Group 10 were associated with a QTL for flowering type. One marker on Linkage Group 1 tracked a QTL for β-sitosterol content of the fruit. A region on Linkage Group 3 tracked vitamin E (α-tocopherol) content of the fruit, and several markers were stable across both locations and study years. We argue that the pursuit of linkage mapping and QTL analysis is worthwhile, even when population size is small.

Contributor Notes

This research was supported in part by a University of California Discovery Grant and the California Avocado Commission (CAC) to M.C., V.A., C.C., H.C., M.D., and L.T.; by the CAC to M.A.; and USDA-ARS (CRIS 6631-21000-022) to D.K.

Current address: National Institute for Health and Family Planning, No. 12 Dahuisi Road, Beijing 100081, China.

Current address: Instituto Politécnico Nacional, CIIDIR Unidad Sinaloa, San Joachín, Guasave, Sinaloa, Mexico.

Retired.

Independent researcher.

Corresponding authors. E-mail: vanessa.ashworth@ucr.edu or philippe.rolshausen@ucr.edu.

Article Sections

Article Figures

  • View in gallery

    Variance statistics for six quantitative traits determined in an avocado mapping population growing at two locations in southern California [South Coast Research & Extension Center in Irvine, CA (SC) and Agricultural Operations of the University of California at Riverside (UCR)]. Dots represent samples, bars show means and SE. Numbers above brackets are probability values (no brackets are shown for P > 0.05).

  • View in gallery

    Plots charting the log-of-odds (LOD) values of markers significantly associated with avocado fruit α-tocopherol contents on linkage group (LG) 3, β-sitosterol contents on LG1, and flowering type on LG10. For β-sitosterol and α-tocopherol, separate LOD plots are shown for each of 2 years and two locations studied [South Coast Research & Extension Center in Irvine, CA (SC) and Agricultural Operations of the University of California at Riverside (UCR)]. X-axes show map positions (cM).

  • View in gallery

    Dot plots showing map positions [cM] of all single nucleotide polymorphism (SNP) markers shared between the avocado ‘Gwen’ × ‘Fuerte’ California (CA)-map (x axis) (this study) and the integrated consensus linkage map of a ‘Simmonds’ × ‘Tonnage’ and ‘Hass’ × ‘Bacon’ reciprocal cross [Florida (FL)-map] (y axis) (Rendón-Anaya et al., 2019). All shared markers located to the same avocado linkage group, but marker arrangements differed in some cases.

  • View in gallery

    Avocado linkage map generated using JoinMap version 4 (Van Ooijen, 2006) and displayed with MapChart (Voorrips, 2002).

Article References

  • AlcarazM.L.HormazaJ.I.2009Selection of potential pollinizers for ‘Hass’ avocado based on flowering time and male–female overlappingScientia Hort.121267271

    • Search Google Scholar
    • Export Citation
  • AshworthV.E.T.M.KobayashiM.C.de la CruzM.CleggM.T.2004Microsatellite markers in avocado (Persea americana Mill.). Developing dinucleotide and trinucleotide markersScientia Hort.101255267

    • Search Google Scholar
    • Export Citation
  • BerghB.O.LahavE.1996Avocados p. 113–166. In: J. Janick and J.N. Moore (eds.). Fruit breeding vol. I: Tree and tropical fruits. Wiley New York NY

  • BorroneJ.W.SchnellR.J.VioliH.A.PloetzR.C.2007Seventy microsatellite markers from Persea americana Miller (avocado) expressed sequence tagsMol. Ecol. Notes7439444

    • Search Google Scholar
    • Export Citation
  • Calderón-VázquezC.DurbinM.L.AshworthV.E.T.M.TommasiniL.MeyerK.K.T.CleggM.T.2013Quantitative genetic analysis of three important nutritive traits in the fruit of avocadoJ. Amer. Soc. Hort. Sci.138283289

    • Search Google Scholar
    • Export Citation
  • ChenH.AshworthV.E.T.M.XuS.CleggM.T.2007Quantitative genetic analysis of growth rate in avocadoJ. Amer. Soc. Hort. Sci.132691696

  • California Irrigation Management Information System2003CIMIS: California Irrigation Management Information System. 17 June 2019. <https://cimis.water.ca.gov/Resources.aspx>

  • D’AmbrosioS.M.2007Phytonutrients: A more natural approach toward cancer preventionSemin. Cancer Biol.17345346

  • DeganiC.LahavE.El-BatsriR.GazitS.2003Caging single avocado trees with a beehive does not guarantee exclusive formation of selfed progenyHortScience3814331434

    • Search Google Scholar
    • Export Citation
  • DingH.HanC.GuoD.ChinY.W.DingY.KinghornA.D.D’AmbrosioS.M.2009Selective induction of apoptosis of human oral cancer cell lines by avocado extracts via a ROS-mediated mechanismNutr. Cancer61348356

    • Search Google Scholar
    • Export Citation
  • EwingB.GreenP.1998Base-calling of automated sequencer traces using phred. II. Error probabilitiesGenome Res.8186194

  • Floral Genome Project2005floralgenome.org. 17 June 2019. <http://www.floralgenome.org/>

  • FritscheS.WangZ.JungC.2017Recent advances in our understanding of tocopherol biosynthesis in plants: An overview of key genes, functions, and breeding of vitamin E improved cropsAntioxidants699doi: 10.3390/antiox6040099

    • Search Google Scholar
    • Export Citation
  • GillilandL.U.Magallanes-LundbackM.HemmingC.SuppleeA.KorneefM.BentsinkL.DellaPennaD.2006Genetic basis for natural variation in seed vitamin E levels in Arabidopsis thalianaProc. Natl. Acad. Sci. USA1031883418841

    • Search Google Scholar
    • Export Citation
  • GordonD.C.AbajianC.GreenP.1998Consed: A graphical tool for sequence finishingGenome Res.8195202

  • HackettC.A.BroadfootL.B.2003Effects of genotyping errors, missing values and segregation distortion in molecular marker data on the construction of linkage mapsHeredity903338

    • Search Google Scholar
    • Export Citation
  • JansenR.C.1993Interval mapping of multiple quantitative trait lociGenetics135205211

  • JeongW.S.LachanceP.A.2001Phytosterols and fatty acids in fig (Ficus carica, var. Mission) fruit and tree componentsJ. Food Sci.66278281

    • Search Google Scholar
    • Export Citation
  • KruglyakL.LanderE.S.1995Nonparametric approach for mapping quantitative trait lociGenetics13914211428

  • KruskalW.H.WallisW.A.1952Use of ranks in one-criterion variance analysisJ. Amer. Stat. Assn.47583621

  • KuhnD.N.LivingstoneD.S.I.I.I.RichardsJ.H.ManosalvaP.Van den BergN.ChambersA.2019Application of genomic tools to avocado (Persea americana) breeding: SNP discovery for genotyping and germplasm characterizationScientia Hort.246111

    • Search Google Scholar
    • Export Citation
  • LahavE.LaviU.2009Avocado genetics and breeding p. 247–285. In: S.M. Jain and P.M. Priyadarshan (eds.). Breeding plantation tree crops: Tropical species. Springer-Verlag New York NY

  • LammertsW.E.1942Progress report on avocado breedingCalifornia Avocado Soc. Yrbk.273641

  • LanderE.S.BotsteinD.1989Mapping Mendelian factors underlying quantitative traits using RFLP linkage mapsGenetics121185199

  • LaviU.LahavE.DeganiC.GazitS.1993Genetics of skin colour, flowering group, and anise scent in avocadoJ. Hered.848284

  • Lopez-LedesmaR.Frati-MunariA.C.Hernandez-DominguezB.C.Cervantes-MontalvoS.Hernandez-LunaM.H.JuarezC.Moran-LiraS.1996Monounsaturated fatty acid (avocado) rich diet for mild hypercholesterolemiaArch. Med. Res.27519523

    • Search Google Scholar
    • Export Citation
  • LuterottiS.BicanicD.PozgajR.2006New simple spectrophotometric assay of total carotenes in margarinesAnal. Chim. Acta573–574466473

  • MäeorgE.LäänisteP.JöuduJ.MäeorgU.2007Some important aspects of sterol analysis of vegetable oilsProc. Estonian Acad. Sci. Chem.565966

    • Search Google Scholar
    • Export Citation
  • Munné-BoschS.WeilerE.W.AlegreL.MüllerM.DüchtingP.FalkJ.2007α-Tocopherol may influence cellular signaling by modulating jasmonic acid levels in plantsPlanta225681691

    • Search Google Scholar
    • Export Citation
  • National Center for Biotechnology Information2005NCBI: National Center for Biotechnology Information. 17 June 2019. <http://www.ncbi.nlm.nih.gov>

  • NickersonD.A.TobeV.O.TaylorS.L.1997PolyPhred: Automating the detection and genotyping of single nucleotide substitutions using fluorescence-based resequencingNucleic Acids Res.2527452751

    • Search Google Scholar
    • Export Citation
  • OuyangS.HeS.LiuP.ZhangW.ZhangJ.ChenS.2011The role of tocopherol cyclase in salt stress tolerance of rice (Oryza sativa)Sci. China Life Sci.54181188

    • Search Google Scholar
    • Export Citation
  • Peraza-MagallanesA.Pereyra-CamachoM.A.Sandoval-CastroE.Medina-GodoyS.Valdez-MoralesM.CleggM.T.Calderón-VázquezC.L.2017Exploring genetic variation, oil and alpha-tocopherol content in avocado (Persea americana) from northwestern MexicoGenet. Resources Crop Evol.64443449doi: 10.1007/s10722-016-0478-9

    • Search Google Scholar
    • Export Citation
  • R Core Team2019R: A language and environment for statistical computing. 5 Apr. 2019. <http://www.R-project.org>

  • Rendón-AnayaM.Ibarra-LacletteE.Méndez BravoA.LanT.ZhengC.Carretero-PauletL.Perez-TorresC.A.Chacón-LópezA.Hernandez-GuzmánG.ChangT.H.FarrK.M.BarbazukW.B.ChamalaS.MutwilM.ShivhareD.Alvarez-PonceD.MitterN.HaywardA.FletcherS.RozasJ.Sánchez GraciaA.KuhnD.Barrientos-PriegoA.F.SalojärviJ.LibradoP.SankoffD.Herrera-EstrellaA.AlbertV.A.Herrera-EstrellaL.2019The avocado genome informs deep angiosperm phylogeny, highlights introgressive hybridization, and reveals pathogen-influenced gene space adaptation. Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1822129116

    • Search Google Scholar
    • Export Citation
  • RyanE.K.GalvinK.O’ConnorT.P.MaguireA.R.O’BrienN.M.2007Phytosterol, squalene, tocopherol content and fatty acid profile of selected seeds, grains, and legumesPlant Foods Hum. Nutr.628591

    • Search Google Scholar
    • Export Citation
  • SedgleyM.1985Some effects of daylength and flower manipulation on the floral cycle of two cultivars of avocado (Persea americana Mill., Lauraceae), a species showing protogynous dichogamyJ. Expt. Bot.36823832

    • Search Google Scholar
    • Export Citation
  • SedgleyM.AnnellsC.M.1981Flowering and fruit-set response to temperature in the avocado cultivar ‘Hass’Scientia Hort.142733

  • SharonD.CreganP.B.MhameedS.KusharskaM.HillelJ.LahavE.LaviU.1997An integrated genetic linkage map of avocadoTheor. Appl. Genet.95911921

    • Search Google Scholar
    • Export Citation
  • TaborH.K.RischN.J.MyersR.M.2002Candidate-gene approaches for studying complex genetic traits: Practical considerationsNat. Rev. Genet.3391397doi: 10.1038/nrg796

    • Search Google Scholar
    • Export Citation
  • The Arabidopsis Information Resource2005TAIR: The Arabidopsis Information Resource. 17 June 2019. <https://www.arabidopsis.org/>

  • U.S. Climate Data2018U.S. Climate Data. 17 June 2019. <https://www.usclimatedata.com/climate/>

  • U.S. Department of Agriculture2018Noncitrus fruits and nuts 2017 summary June 2018. 17 June 2019. <http://usda.mannlib.cornell.edu/usda/current/NoncFruiNu/NoncFruiNu-06-26-2018.pdf/>

  • Van NockerS.GardinerS.E.2014Breeding better cultivars, faster: Applications of new technologies for the rapid deployment of superior horticultural tree cropsHort. Res.114022doi: 10.1038/hortres.2014.22

    • Search Google Scholar
    • Export Citation
  • Van OoijenJ.W.2004MapQTL® 5 Software for the mapping of quantitative trait loci in experimental populations. Kyazma Wageningen The Netherlands

  • Van OoijenJ.W.2006JoinMap® 4 Software for the calculation of genetic linkage maps in experimental populations. Kyazma Wageningen The Netherlands

  • Van OoijenJ.W.2009MapQTL® 6 Software for the mapping of quantitative trait loci in experimental populations of diploid species. Kyazma Wageningen The Netherlands

  • VoglC.XuS.2000Multipoint mapping of viability and segregation distorting loci using molecular markersGenetics15514391447

  • VoorripsR.E.2002MapChart: Software for the graphical presentation of linkage maps and QTLsJ. Hered.937778

  • WangC.ZhuC.ZhaiH.WanJ.2005Mapping segregation distortion loci and quantitative trait loci for spikelet sterility in rice (Oryza sativa L.)Genet. Res.8697106

    • Search Google Scholar
    • Export Citation
  • WangH.XuS.FanY.LiuN.ZhanW.LiuH.XiaoY.LiK.PanQ.LiW.DengM.LiuJ.JinM.YangX.LiJ.LiQ.YanJ.2018Beyond pathways: Genetic dissection of tocopherol content in maize kernels by combining linkage and association analysesPlant Biotechnol. J.1614641475

    • Search Google Scholar
    • Export Citation
  • XuS.2008Quantitative trait locus mapping can benefit from segregation distortionGenetics18022012208

Article Information

Google Scholar

Related Content

Article Metrics

All Time Past Year Past 30 Days
Abstract Views 84 84 84
Full Text Views 9 9 9
PDF Downloads 6 6 6