Morphological and Physiological Responses of Seashore Paspalum and Bermudagrass to Waterlogging Stress

in Journal of the American Society for Horticultural Science

Turfgrasses have varying tolerance to waterlogging conditions. The objective of this study was to identify important root traits and physiological responses to waterlogging stress in seashore paspalum (Paspalum vaginatum) and bermudagrass (Cynodon sp.). After being exposed to waterlogging conditions for 28 days, turf quality, leaf photosynthesis, transpiration rate, stomatal conductance (gS), and root fresh weight were significantly decreased in bermudagrass, and root lipid peroxidation was significantly increased. However, seashore paspalum was found to be more tolerant to waterlogging conditions and changes in turf quality, photosynthesis, or lipid peroxidation were not seen. The waterlogging treatments increased specific root length (SRL), surface area, and volume and decreased root respiration and diameter to a greater extent in seashore paspalum compared with bermudagrass. Under waterlogging conditions, root aerenchyma formation was found in both seashore paspalum and bermudagrass, but to a greater extent in seashore paspalum. Both grasses exhibited significant increases in root water-soluble carbohydrate (WSC) but to a lesser extent in seashore paspalum than in bermudagrass. Shoot WSC remained unchanged in seashore paspalum but was significantly increased in bermudagrass. These results indicate greater root morphological changes such as root volume, SRL, and root porosity, as well as lower root respiration may be important contributors to waterlogging tolerance for seashore paspalum.

Contributor Notes

Funding was provided by the University of Georgia Research Foundation. We appreciate technical assistance provided by Krishna Katuwal.

Corresponding author. E-mail: djesper@uga.edu.

Article Sections

Article Figures

  • View in gallery

    Turf quality ratings based on a 1 to 9 scale with 9 being turgid, green leaves and 1 being completely dead (A), root biomass (B), shoot biomass (C), and plant height (D) of seashore paspalum and bermudagrass grown under control (CL) or waterlogged (WL) soil conditions for 28 d. Error bars indicate sd (n = 5), and letters represent least significant difference groups at P ≤ 0.05.

  • View in gallery

    Root diameter (A), specific root length (B), surface area (C), and specific volume (D) of seashore paspalum and bermudagrass grown under control (CL) or waterlogged (WL) soil conditions for 28 d. Error bars indicate sd (n = 5), and letters represent least significant difference groups at P ≤ 0.05.

  • View in gallery

    Representative image of transverse root sections of seashore paspalum and bermudagrass in control and waterlogging treatments.

  • View in gallery

    Photosynthesis (A), transpiration rate (B), stomatal conductance (C), internal CO2 concentration (D), leaf respiration (E), root respiration (F) of seashore paspalum and bermudagrass grown under control (CL) or waterlogged (WL) soil conditions for 28 d. Error bars indicate sd (n = 5), and letters represent least significant difference groups at P ≤ 0.05.

  • View in gallery

    Root water-soluble carbohydrates (WSC) (A), shoot WSC (B), and root malondialdehyde (MDA) content (C) of seashore paspalum and bermudagrass grown under control (CL) or waterlogged (WL) soil conditions for 28 d. Error bars indicate sd (n = 5), and letters represent least significant difference groups at P ≤ 0.05.

Article References

  • AhmedS.NawataE.HosokawaM.DomaeY.SakurataniT.2002Alterations in photosynthesis and some antioxidant enzymatic activities of mungbean subjected to waterloggingPlant Sci.163117123

    • Search Google Scholar
    • Export Citation
  • AshrafM.YasminH.1991Differential waterlogging tolerance in three grasses of contrasting habitats: Aeluropus lagopoides (L.) Trin., Cynodon dactylon (L.) Pers. and Leptochloa fusca (L.)Kunth. Environ. Expt. Bot.31437445

    • Search Google Scholar
    • Export Citation
  • Bailey-SerresJ.VoesenekL.A.C.J.2008Flooding stress: Acclimations and genetic diversityAnnu. Rev. Plant Biol.59313339

  • BantiV.GiuntoliB.GonzaliS.LoretiE.MagneschiL.NoviG.PaparelliE.ParlantiS.PucciarielloC.SantanielloA.PerataP.2013Low oxygen response mechanisms in green organismsIntl. J. Mol. Sci.1447344761

    • Search Google Scholar
    • Export Citation
  • Barrett-LennardE.G.MalcolmC.V.BathgateA.2003Saltland pastures in Australia: A practical guide. 2nd ed. Land Water & Wool Sustainable Grazing on Saline Lands Sub-Program Perth Australia

  • BeardJ.B.GreenR.L.1994The role of turfgrasses in environmental protection and their benefits to humansJ. Environ. Qual.23452460

  • BeloniT.PezzopaneC.G.RovadosckiG.A.FáveroA.P.Dias-FilhoM.B.SantosP.M.2017Morphological and physiological responses and the recovery ability of Paspalum accessions to water deficit and waterloggingGrass Forage Sci.72840850

    • Search Google Scholar
    • Export Citation
  • BlomC.W.P.M.VoesenekL.A.C.J.1996Flooding: The survival strategies of plantsTrends Ecol. Evol.11290295

  • BlomC.W.P.M.BögemannG.M.LaanP.van der SmanA.J.M.van de SteegH.M.VoesenekL.A.C.J.1990Adaptations to flooding in plants from river areasAquat. Bot.382947

    • Search Google Scholar
    • Export Citation
  • CardosoJ.A.RincónJ.JiménezJ.C.NogueraD.RaoI.M.2013Morpho-anatomical adaptations to waterlogging by germplasm accessions in a tropical forage grassAoB Plants5plt047

    • Search Google Scholar
    • Export Citation
  • CardosoJ.A.JiménezJ.C.RaoI.M.2014Waterlogging-induced changes in root architecture of germplasm accessions of the tropical forage grass Brachiaria humidicolaAoB Plants6plu017

    • Search Google Scholar
    • Export Citation
  • CarpenterJ.R.MitchellC.A.1980Root respiration characteristics of flood-tolerant and intolerant tree speciesJ. Amer. Soc. Hort. Sci.105684687

    • Search Google Scholar
    • Export Citation
  • CloseD.C.DavidsonN.J.2003Long-term waterlogging: Nutrient, gas exchange, photochemical and pigment characteristics of Eucalyptus nitens saplingsRuss. J. Plant Physiol.50843847

    • Search Google Scholar
    • Export Citation
  • DrewM.C.1997Oxygen deficiency and root metabolism: Injury and acclimation under hypoxia and anoxiaAnnu. Rev. Plant Physiol. Plant Mol. Biol.48223250

    • Search Google Scholar
    • Export Citation
  • DuncanR.R.CarrowR.N.2000Seashore paspalum: The environmental turfgrass. Wiley Hoboken NJ

  • ElseM.A.DaviesW.J.MaloneM.JacksonM.B.1995A negative hydraulic message from oxygen-deficient roots of tomato plants? Influence of soil flooding on leaf water potential, leaf expansion, and synchrony between stomatal conductance and root hydraulic conductivityPlant Physiol.10910171024

    • Search Google Scholar
    • Export Citation
  • FukaoT.Bailey-SerresJ.2004Plant responses to hypoxia—Is survival a balancing act?Trends Plant Sci.9449456

  • GalkovskyiT.MileykoY.BuckschA.MooreB.SymonovaO.PriceC.A.ToppC.N.Iyer-PascuzziA.S.ZurekP.R.FangS.HarerJ.BenfeyP.N.WeitzJ.S.2012GiA Roots: Software for the high throughput analysis of plant root system architectureBMC Plant Biol.12116

    • Search Google Scholar
    • Export Citation
  • GondorO.K.JandaT.SzalaiG.2013Comparative study of viability measurement methods in crop plantsActa Agron. Hung.61219226

  • GuoP.JinH.WeiH.LiL.BaoY.2016Fine root growth and water use efficiency in alfalfa (Medicago sativa L. cv. Gongong No. 1) planted along a salinity gradient in coastal area of Dalian, northeast ChinaSoil Sci. Plant Nutr.62164172

    • Search Google Scholar
    • Export Citation
  • HareM.D.SaengkhamM.TatsapongP.WongpichetK.TudsriS.2004Waterlogging tolerance of some tropical pasture grassesTrop. Grassl.38227233

  • HodgesD.M.DeLongJ.M.ForneyC.F.PrangeR.K.1999Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compoundsPlanta207604611

    • Search Google Scholar
    • Export Citation
  • HuangB.JohnsonJ.W.1995Root respiration and carbohydrate status of two wheat genotypes in response to hypoxiaAnn. Bot.75427432

  • HuangB.LiuX.FryJ.D.1998Effects of high temperature and poor soil aeration on root growth and viability of creeping bentgrassCrop Sci.3816181622

    • Search Google Scholar
    • Export Citation
  • InsaustiP.GrimoldiA.A.ChanetonE.J.VasellatiV.2001Flooding induces a suite of adaptive plastic responses in the grass Paspalum dilatatumNew Phytol.152291299

    • Search Google Scholar
    • Export Citation
  • InsaustiP.ChanetonE.J.SorianoA.1999Flooding reverted grazing effects on plant community structure in mesocosms of lowland grasslandOikos84266276

    • Search Google Scholar
    • Export Citation
  • JiangY.W.WangK.H.2006Growth, physiological and anatomical responses of creeping bentgrass cultivars to different depths of waterloggingCrop Sci.4624202426

    • Search Google Scholar
    • Export Citation
  • JiménezJ.C.CardosoJ.A.DominguezM.FischerG.RaoI.2015Morpho-anatomical traits of root and non-enzymatic antioxidant system of leaf tissue contribute to waterlogging tolerance in Brachiaria grassesGrassl. Sci.61243252

    • Search Google Scholar
    • Export Citation
  • JustinS.H.F.W.ArmstrongW.1987The anatomical characteristics of roots and plant response to soil floodingNew Phytol.106465495

  • KoehlerL.H.1952Differentiation of carbohydrates by anthrone reaction rate and color intensityAnal. Chem.2415761579

  • KransJ.V.MorrisK.2007Determining a profile of protocols and standards used in the visual field assessment of turfgrasses: A survey of national turfgrass evaluation program-sponsored university scientistsAppl. Turfgrass Sci.416

    • Search Google Scholar
    • Export Citation
  • KuoC.G.ChenB.W.1980Physiological responses of tomato cultivars to floodingJ. Amer. Soc. Hort. Sci.105751755

  • LaanP.BlomC.W.P.M.1990Growth and survival responses of Rumex species to flooded and submerged conditions: The importance of shoot elongation, underwater photosynthesis and reserve carbohydratesJ. Expt. Bot.41775783

    • Search Google Scholar
    • Export Citation
  • LambersH.1976Respiration and NADH-oxidation of the roots of flood-tolerant and flood-intolerant Senecio species as affected by anaerobiosisPhysiol. Plant.37117122

    • Search Google Scholar
    • Export Citation
  • LamontB.1983Root hair dimensions and surface/volume/weight ratios of roots with the aid of scanning electron microscopyPlant Soil74149152

    • Search Google Scholar
    • Export Citation
  • LiD.HanL.ChristiansN.E.MinnerD.D.2001Morphological changes of tall fescue in response to saturated soil conditionsIntl. Turfgrass Soc. Res. J.9317322

    • Search Google Scholar
    • Export Citation
  • LiS.H.GeZ.M.XieL.N.ChenW.YuanL.WangD.Q.LiX.Z.ZhangL.Q.2018Ecophysiological response of native and exotic salt marsh vegetation to waterlogging and salinity: Implications for the effects of sea-level riseSci. Rpt.82441doi: 10.1038/s41598-017-18721-z

    • Search Google Scholar
    • Export Citation
  • LiaoC.T.LinC.H.1995Effect of flood stress on morphology and anaerobic metabolism of Momordica charantiaEnviron. Expt. Bot.35105113

  • LinC.H.LinC.H.1992Physiological adaptation of waxapple to waterloggingPlant Cell Environ.15321328

  • LiuM.HultingA.Mallory-SmithC.2017Comparison of growth and physiological characteristics between roughstalk bluegrass and tall fescue in response to simulated waterloggingPLoS One12e0182035

    • Search Google Scholar
    • Export Citation
  • LiuM.JiangY.2015Genotypic variation in growth and metabolic responses of perennial ryegrass exposed to short-term waterlogging and submergence stressPlant Physiol. Biochem.955764

    • Search Google Scholar
    • Export Citation
  • ManikS.M.N.PengilleyG.DeanG.FieldB.ShabalaS.ZhouM.2019Soil and crop management practices to minimize the impact of waterlogging on crop productivityFront. Plant Sci.10140

    • Search Google Scholar
    • Export Citation
  • NaidooG.MundreeS.G.1993Relationship between morphological and physiological responses to waterlogging and salinity in Sporobolus virginicus (L.) KunthOecologia93360366

    • Search Google Scholar
    • Export Citation
  • OuL.J.DaiX.Z.ZhangZ.Q.ZouX.X.2011Responses of pepper to waterlogging stressPhotosynthetica49339345

  • PezeshkiS.R.PardueJ.H.DeLauneR.D.1996Leaf gas exchange and growth of flood-tolerant and flood-sensitive tree species under low soil redox conditionsTree Physiol.16453458

    • Search Google Scholar
    • Export Citation
  • PompeianoA.Huarancca ReyesT.MolesT.M.VillaniM.VolterraniM.GuglielminettiL.ScartazzaA.2017Inter- and intraspecific variability in physiological traits and post-anoxia recovery of photosynthetic efficiency in grasses under oxygen deprivationPhysiol. Plant.161385399

    • Search Google Scholar
    • Export Citation
  • PuyangX.AnM.XuL.HanL.ZhangX.2015Antioxidant responses to waterlogging sress and subsequent recovery in two kentucky bluegrass cultivarsActa Physiol. Plant.37197

    • Search Google Scholar
    • Export Citation
  • RubioG.OesterheldM.AlvarezC.R.LavadoR.S.1997Mechanisms for the increase in phosphorus uptake of waterlogged plants: Soil phosphorus availability, root morphology and uptake kineticsOecologia112150155

    • Search Google Scholar
    • Export Citation
  • SarkarR.K.DeR.N.ReddyJ.N.RamakrishnayyaG.1996Studies on the submergence tolerance mechanism in relation to carbohydrate, chlorophyll and specific leaf weight in rice (Oryza sativa L.)J. Plant Physiol.149623625

    • Search Google Scholar
    • Export Citation
  • SuP.H.SuC.H.1996Metabolic responses of luffa roots to long-term floodingJ. Plant Physiol.148735740

  • TanS.ZhuM.ZhangQ.2010Physiological responses of bermudagrass (Cynodon dactylon) to submergenceActa Physiol. Plant.32133140

  • VriezenW.H.ZhouZ.Van Der StraetenD.2003Regulation of submergence-induced enhanced shoot elongation in Oryza sativa LAnn. Bot.91263270

    • Search Google Scholar
    • Export Citation
  • WangK.BianS.JiangY.2009Anaerobic metabolism in roots of kentucky bluegrass in response to short-term waterlogging alone and in combination with high temperaturesPlant Soil314221229

    • Search Google Scholar
    • Export Citation
  • WangK.JiangY.2007aAntioxidant responses of creeping bentgrass roots to waterloggingCrop Sci.47232238

  • WangK.JiangY.2007bWaterlogging tolerance of kentucky bluegrass cultivarsHortScience42386390

  • WaringE.F.MaricleB.R.2012Photosynthetic variation and carbon isotope discrimination in invasive wetland grasses in response to floodingEnviron. Expt. Bot.777786

    • Search Google Scholar
    • Export Citation
  • XuX.WangH.QiX.XuQ.ChenX.2014Waterlogging-induced increase in fermentation and related gene expression in the root of cucumber (Cucumis sativus L.)Scientia Hort.179388395

    • Search Google Scholar
    • Export Citation
  • YeT.ShiH.WangY.ChanZ.2015Contrasting changes caused by drought and submergence stresses in Bermudagrass (Cynodon dactylon)Front. Plant Sci.6951doi: 10.3389/fpls.2015.00951

    • Search Google Scholar
    • Export Citation
  • YeY.TamN.F.Y.WongY.S.LuC.Y.2003Growth and physiological responses of two mangrove species (Bruguiera gymnorrhiza and Kandelia candel) to waterloggingEnviron. Exp. Bot.49209221

    • Search Google Scholar
    • Export Citation
  • YinD.ChenS.ChenF.GuanZ.FangW.2010Morpho-anatomical and physiological responses of two Dendranthema species to waterloggingEnviron. Exp. Bot.68122130

    • Search Google Scholar
    • Export Citation
  • YinX.ZhangC.SongX.JiangY.2017Interactive short-term effects of waterlogging and salinity stress on growth and carbohydrate, lipid peroxidation, and nutrients in two perennial ryegrass cultivarsJ. Amer. Soc. Hort. Sci.142110118

    • Search Google Scholar
    • Export Citation
  • ZhangQ.ZukA.J.RueK.2013Turfgrasses responded differently to salinity, waterlogging, and combined saline–waterlogging conditionsCrop Sci.5326862692

    • Search Google Scholar
    • Export Citation
  • ZhouJ.TianX.QiaoL.QinP.2012Respiratory enzyme activity and regulation of respiration pathway in seashore mallow (Kosteletzkya virginica) seedlings under waterlogging conditionsAustral. J. Crop Sci.6756762

    • Search Google Scholar
    • Export Citation
  • ZongJ.GaoY.ChenJ.GuoH.WangY.MengF.JiangY.LiuJ.2015Growth and enzymatic activity of four warm-season turfgrass species exposed to waterloggingJ. Amer. Soc. Hort. Sci.140151162

    • Search Google Scholar
    • Export Citation

Article Information

Google Scholar

Related Content

Article Metrics

All Time Past Year Past 30 Days
Abstract Views 311 311 119
Full Text Views 36 36 11
PDF Downloads 21 21 6